
The sum of infinite terms of a G.P is $x$ and on squaring each term of it, the sum will be $y$, then the common ratio of this series is
A. $\frac{{{x}^{2}}-{{y}^{2}}}{{{x}^{2}}+{{y}^{2}}}$
B. $\frac{{{x}^{2}}+{{y}^{2}}}{{{x}^{2}}-{{y}^{2}}}$
C. $\frac{{{x}^{2}}-y}{{{x}^{2}}+y}$
D. $\frac{{{x}^{2}}+y}{{{x}^{2}}-y}$
Answer
215.7k+ views
Hint: In this question, we are to find the relationship between the given sums. Since the given sums are in G.P, we can use the sum of infinite terms formula and the required relation is calculated.
Formula Used:The sum of the infinite terms in G.P series is calculated by
${{S}_{\infty }}=\frac{a}{1-r}$ where $r=\frac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{\infty }}$ is the sum of the infinite terms of the series; $a$ is the first term in the series, and $r$ is the common ratio.
Complete step by step solution:Consider a series of terms which are in G.P as
$a,ar,a{{r}^{2}},.....\infty $
Thus, the sum of the infinite terms of the series is calculated by the formula,
${{S}_{\infty }}=\frac{a}{1-r}$
On substituting,
\[{{S}_{\infty }}=\frac{a}{1-r}\]
But it is given that ${{S}_{\infty }}=x$.
So,
$x=\frac{a}{1-r}\text{ }...(1)$
On squaring each term in the series, we get
${{a}^{2}},{{(ar)}^{2}},{{(a{{r}^{2}})}^{2}},.....\infty $
Since the series is a geometric series, the common ratio is
$r=\frac{{{a}_{n}}}{{{a}_{n-1}}}$
\[\begin{align}
& \Rightarrow r=\frac{{{a}_{2}}}{{{a}_{1}}} \\
& \text{ =}\frac{{{a}^{2}}{{r}^{2}}}{{{a}^{2}}} \\
& \text{ }={{r}^{2}} \\
\end{align}\]
Thus, the sum of the infinite terms of the series is calculated by the formula,
${{S}_{\infty }}=\frac{a}{1-r}$
On substituting $a={{a}^{2}};r={{r}^{2}}$, we get
\[{{S}_{\infty }}=\frac{{{a}^{2}}}{1-{{r}^{2}}}\]
But it is given that ${{S}_{\infty }}=y$.
So,
$\begin{align}
& y=\frac{{{a}^{2}}}{1-{{r}^{2}}} \\
& \text{ }=\frac{a}{1-r}\times \frac{a}{1+r} \\
\end{align}$
On substituting (1), we get
$y=x\left( \frac{a}{1+r} \right)$
Here $a=x(1-r)$ from (1).
So,
$y=x\left( \frac{x(1-r)}{1+r} \right)$
On simplifying,
$\begin{align}
& y={{x}^{2}}\left( \frac{1-r}{1+r} \right) \\
& \Rightarrow \frac{y}{{{x}^{2}}}=\frac{1-r}{1+r} \\
& \Rightarrow \frac{{{x}^{2}}}{y}=\frac{1+r}{1-r} \\
& \Rightarrow \frac{{{x}^{2}}}{y}(1-r)=1+r \\
\end{align}$
On simplifying,
$\begin{align}
& \Rightarrow \frac{{{x}^{2}}}{y}-\frac{{{x}^{2}}}{y}(r)=1+r \\
& \Rightarrow \frac{{{x}^{2}}}{y}-1=r+\frac{{{x}^{2}}}{y}(r) \\
& \Rightarrow \frac{{{x}^{2}}}{y}-1=r(1+\frac{{{x}^{2}}}{y}) \\
& \Rightarrow r=\frac{(\frac{{{x}^{2}}}{y}-1)}{(\frac{{{x}^{2}}}{y}+1)} \\
\end{align}$
\[\begin{align}
& \Rightarrow r=\frac{(\frac{{{x}^{2}}-y}{y})}{(\frac{{{x}^{2}}+y}{y})} \\
& \Rightarrow r=\frac{{{x}^{2}}-y}{{{x}^{2}}+y} \\
\end{align}\]
Option ‘C’ is correct
Note: Here the given sums are in G.P. So, using the sum of infinite terms formula, the required expression is framed.
Formula Used:The sum of the infinite terms in G.P series is calculated by
${{S}_{\infty }}=\frac{a}{1-r}$ where $r=\frac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{\infty }}$ is the sum of the infinite terms of the series; $a$ is the first term in the series, and $r$ is the common ratio.
Complete step by step solution:Consider a series of terms which are in G.P as
$a,ar,a{{r}^{2}},.....\infty $
Thus, the sum of the infinite terms of the series is calculated by the formula,
${{S}_{\infty }}=\frac{a}{1-r}$
On substituting,
\[{{S}_{\infty }}=\frac{a}{1-r}\]
But it is given that ${{S}_{\infty }}=x$.
So,
$x=\frac{a}{1-r}\text{ }...(1)$
On squaring each term in the series, we get
${{a}^{2}},{{(ar)}^{2}},{{(a{{r}^{2}})}^{2}},.....\infty $
Since the series is a geometric series, the common ratio is
$r=\frac{{{a}_{n}}}{{{a}_{n-1}}}$
\[\begin{align}
& \Rightarrow r=\frac{{{a}_{2}}}{{{a}_{1}}} \\
& \text{ =}\frac{{{a}^{2}}{{r}^{2}}}{{{a}^{2}}} \\
& \text{ }={{r}^{2}} \\
\end{align}\]
Thus, the sum of the infinite terms of the series is calculated by the formula,
${{S}_{\infty }}=\frac{a}{1-r}$
On substituting $a={{a}^{2}};r={{r}^{2}}$, we get
\[{{S}_{\infty }}=\frac{{{a}^{2}}}{1-{{r}^{2}}}\]
But it is given that ${{S}_{\infty }}=y$.
So,
$\begin{align}
& y=\frac{{{a}^{2}}}{1-{{r}^{2}}} \\
& \text{ }=\frac{a}{1-r}\times \frac{a}{1+r} \\
\end{align}$
On substituting (1), we get
$y=x\left( \frac{a}{1+r} \right)$
Here $a=x(1-r)$ from (1).
So,
$y=x\left( \frac{x(1-r)}{1+r} \right)$
On simplifying,
$\begin{align}
& y={{x}^{2}}\left( \frac{1-r}{1+r} \right) \\
& \Rightarrow \frac{y}{{{x}^{2}}}=\frac{1-r}{1+r} \\
& \Rightarrow \frac{{{x}^{2}}}{y}=\frac{1+r}{1-r} \\
& \Rightarrow \frac{{{x}^{2}}}{y}(1-r)=1+r \\
\end{align}$
On simplifying,
$\begin{align}
& \Rightarrow \frac{{{x}^{2}}}{y}-\frac{{{x}^{2}}}{y}(r)=1+r \\
& \Rightarrow \frac{{{x}^{2}}}{y}-1=r+\frac{{{x}^{2}}}{y}(r) \\
& \Rightarrow \frac{{{x}^{2}}}{y}-1=r(1+\frac{{{x}^{2}}}{y}) \\
& \Rightarrow r=\frac{(\frac{{{x}^{2}}}{y}-1)}{(\frac{{{x}^{2}}}{y}+1)} \\
\end{align}$
\[\begin{align}
& \Rightarrow r=\frac{(\frac{{{x}^{2}}-y}{y})}{(\frac{{{x}^{2}}+y}{y})} \\
& \Rightarrow r=\frac{{{x}^{2}}-y}{{{x}^{2}}+y} \\
\end{align}\]
Option ‘C’ is correct
Note: Here the given sums are in G.P. So, using the sum of infinite terms formula, the required expression is framed.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

