
The speed of a transverse wave, going on a wire having a length of 50 cm and mass of 5.0 g is 80 m/s. The area of the cross-section of the wire is \[1m{m^2}\]. Young's modulus is \[1.6 \times {10^{11}}\]. Find the extension of the wire over its natural length.
Answer
149.4k+ views
Hint: First of all, determine the linear mass density of the wire, and then using the relation between the speed of the wave and tension, we will determine the tension developed in the wire. After that apply the relation between the young’s modulus and the strain. Hence, we will get a suitable answer.
Formula used:
\[E = \dfrac{\sigma }{\varepsilon }\]
Complete step by step solution:
In the above problem, we have given the mass of the wire, length of the wire, and cross-section of the wire.
Therefore,
Mass of the wire (m) = 5 Gram, length of the wire(L) = 50cm, cross section of the wire (A) = \[1m{m^2}\] and
Young’ modulus = \[1.6 \times {10^{11}}\] Speed of the wave = 80m/s
Now we have to determine the extension of the wire over its natural length.
Therefore,
We know that
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{\sigma }{\varepsilon }}\end{array}\]
Where
E = young’s modulus
\[\sigma \]= stress induced due to tensile force
\[\varepsilon \]= strain
We know that
\[\begin{array}{*{20}{c}}{ \Rightarrow \sigma }& = &{\dfrac{T}{A}}\end{array}\] And \[\begin{array}{*{20}{c}}{ \Rightarrow \varepsilon }& = &{\dfrac{{\Delta L}}{L}}\end{array}\]
Where
T = tensile force
\[\Delta L\]= extension in the wire
Therefore,
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{{\dfrac{T}{A}}}{{\dfrac{{\Delta L}}{L}}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{{TL}}{{A\Delta L}}}\end{array}\] ……. (1).
Now, we know that the linear mass density is,
\[\begin{array}{*{20}{c}}{ \Rightarrow \mu }& = &{\dfrac{m}{L}}\end{array}\]
Therefore, put the value
\[\begin{array}{*{20}{c}}{ \Rightarrow \mu }& = &{\dfrac{{5 \times {{10}^{ - 3}}}}{{5 \times {{10}^{ - 2}}}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow \mu }& = &{0.1{\raise0.5ex\hbox{$\scriptstyle {kg}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle m$}}}\end{array}\]
So, the tensile force is given by
\[\begin{array}{*{20}{c}}{ \Rightarrow v}& = &{\sqrt {\dfrac{T}{\mu }} }\end{array}\]
Put the value,
\[\begin{array}{*{20}{c}}{ \Rightarrow 80}& = &{\sqrt {\dfrac{T}{{0.1}}} }\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow T}& = &{64N}\end{array}\]
Now put all the values in the equation (1). Therefore, we will get
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{{TL}}{{A\Delta L}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow 1.6 \times {{10}^{11}}}& = &{\dfrac{{64 \times 0.5}}{{1 \times {{10}^{ - 6}} \times \Delta L}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow \Delta L}& = &{0.02mm}\end{array}\]
So, the extension in the wire is 0.02mm.
Note: It is important to note that the units of all the parameters must be the same otherwise there will be an error in the solution. The common errors occur in reading, zero error, etc. These problems while solving tend to make many mistakes because it includes a number of formulas to remember.
Formula used:
\[E = \dfrac{\sigma }{\varepsilon }\]
Complete step by step solution:
In the above problem, we have given the mass of the wire, length of the wire, and cross-section of the wire.
Therefore,
Mass of the wire (m) = 5 Gram, length of the wire(L) = 50cm, cross section of the wire (A) = \[1m{m^2}\] and
Young’ modulus = \[1.6 \times {10^{11}}\] Speed of the wave = 80m/s
Now we have to determine the extension of the wire over its natural length.
Therefore,
We know that
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{\sigma }{\varepsilon }}\end{array}\]
Where
E = young’s modulus
\[\sigma \]= stress induced due to tensile force
\[\varepsilon \]= strain
We know that
\[\begin{array}{*{20}{c}}{ \Rightarrow \sigma }& = &{\dfrac{T}{A}}\end{array}\] And \[\begin{array}{*{20}{c}}{ \Rightarrow \varepsilon }& = &{\dfrac{{\Delta L}}{L}}\end{array}\]
Where
T = tensile force
\[\Delta L\]= extension in the wire
Therefore,
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{{\dfrac{T}{A}}}{{\dfrac{{\Delta L}}{L}}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{{TL}}{{A\Delta L}}}\end{array}\] ……. (1).
Now, we know that the linear mass density is,
\[\begin{array}{*{20}{c}}{ \Rightarrow \mu }& = &{\dfrac{m}{L}}\end{array}\]
Therefore, put the value
\[\begin{array}{*{20}{c}}{ \Rightarrow \mu }& = &{\dfrac{{5 \times {{10}^{ - 3}}}}{{5 \times {{10}^{ - 2}}}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow \mu }& = &{0.1{\raise0.5ex\hbox{$\scriptstyle {kg}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle m$}}}\end{array}\]
So, the tensile force is given by
\[\begin{array}{*{20}{c}}{ \Rightarrow v}& = &{\sqrt {\dfrac{T}{\mu }} }\end{array}\]
Put the value,
\[\begin{array}{*{20}{c}}{ \Rightarrow 80}& = &{\sqrt {\dfrac{T}{{0.1}}} }\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow T}& = &{64N}\end{array}\]
Now put all the values in the equation (1). Therefore, we will get
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{{TL}}{{A\Delta L}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow 1.6 \times {{10}^{11}}}& = &{\dfrac{{64 \times 0.5}}{{1 \times {{10}^{ - 6}} \times \Delta L}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow \Delta L}& = &{0.02mm}\end{array}\]
So, the extension in the wire is 0.02mm.
Note: It is important to note that the units of all the parameters must be the same otherwise there will be an error in the solution. The common errors occur in reading, zero error, etc. These problems while solving tend to make many mistakes because it includes a number of formulas to remember.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

Charging and Discharging of Capacitor

Ideal and Non-Ideal Solutions Raoult's Law - JEE

The time period of an artificial satellite in a circular class 11 physics JEE_Main

Class 11 JEE Main Physics Mock Test 2025

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Main Chemistry Question Paper with Answer Keys and Solutions

A pressure of 100 kPa causes a decrease in volume of class 11 physics JEE_Main

A boy wants to throw a ball from a point A so as to class 11 physics JEE_Main

Select incorrect statements A Zero acceleration of class 11 physics JEE_Main

Assertion On a rainy day it is difficult to drive a class 11 physics JEE_Main
