
The specific heat of metal is 0.67 J/g. Its equivalent mass is 20. What is its exact atomic mass:
(A) 46
(B) 20
(C) 40
(D) 22
Answer
152.7k+ views
Hint: (1) The specific heat of a substance refers to the amount of heat per unit mass which is required to raise the temperature by one degree Celsius.
(2) Atomic mass of an element refers to the average atomic mass of the atoms of an element measured in atomic mass unit (amu).
Complete step-by-step answer: Given, the specific heat of a metal
Also given, the equivalent mass of the metal
To find: the exact atomic mass of the metal.
The relationship between the specific heat and the atomic mass of an element is given by the Dulong-Petit law. According to the Dulong-Petit law, the gram-atomic heat capacity is constant, i.e. the product of the specific heat and the atomic mass of an element is a constant, approximately equal to 6.4. This is the same for all solid elements, about six calories per gram atom.
First, let us convert the specific heat from Joule per gram into calorie per gram.
We know,
So, the specific heat of the metal in calorie per gram
According to Dulong-Petit law, approximate atomic mass × specific heat
Therefore, the approximate atomic mass
Given, the equivalent mass of the metal
We know that valency is equal to the approximate atomic mass of the metal divided by the equivalent mass of the metal. So, valency
Therefore, exact atomic mass = valency × equivalent mass
Hence, the exact atomic mass of the metal is equal to 40g. So, the correct option is (C).
Additional information:
An equivalent statement of Dulong-Petit law is where C is the heat capacity of the substance, n is the number of moles of the substance and R is the gas constant.
Note: The Dulong-Petit law fails at room temperature for light atoms like Be, B, C etc. because in case of these atoms, the law gives prediction of higher heat capacities than that which are actually found. This difference is because of the high energy vibrational modes that are not populated.
(2) Atomic mass of an element refers to the average atomic mass of the atoms of an element measured in atomic mass unit (amu).
Complete step-by-step answer: Given, the specific heat of a metal
Also given, the equivalent mass of the metal
To find: the exact atomic mass of the metal.
The relationship between the specific heat and the atomic mass of an element is given by the Dulong-Petit law. According to the Dulong-Petit law, the gram-atomic heat capacity is constant, i.e. the product of the specific heat and the atomic mass of an element is a constant, approximately equal to 6.4. This is the same for all solid elements, about six calories per gram atom.
First, let us convert the specific heat from Joule per gram into calorie per gram.
We know,
So, the specific heat of the metal in calorie per gram
According to Dulong-Petit law, approximate atomic mass × specific heat
Therefore, the approximate atomic mass
Given, the equivalent mass of the metal
We know that valency is equal to the approximate atomic mass of the metal divided by the equivalent mass of the metal. So, valency
Therefore, exact atomic mass = valency × equivalent mass
Hence, the exact atomic mass of the metal is equal to 40g. So, the correct option is (C).
Additional information:
An equivalent statement of Dulong-Petit law is
Note: The Dulong-Petit law fails at room temperature for light atoms like Be, B, C etc. because in case of these atoms, the law gives prediction of higher heat capacities than that which are actually found. This difference is because of the high energy vibrational modes that are not populated.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

Thermodynamics Class 11 Notes: CBSE Chapter 5

Displacement-Time Graph and Velocity-Time Graph for JEE
