
The solution of the equation $4{{\cos }^{2}}x+6{{\sin }^{2}}x=5$
A. \[x=n\pi \pm \dfrac{\pi }{2}\]
B. \[x=n\pi \pm \dfrac{\pi }{4}\]
C. \[x=n\pi \pm \dfrac{3\pi }{2}\]
D. None of these.
Answer
232.8k+ views
Hint: we will rewrite the given equation in a way so that we can apply the formula of ${{\sin }^{2}}x+{{\cos }^{2}}x$ in it. We will then simplify the equation and derive an equation and then we will use the theorem according to which for any of the real numbers $x,y$, $\sin x=\sin y$ implies that \[x=n\pi \pm y\] where \[n\in Z\].
Formula Used: ${{\sin }^{2}}x+{{\cos }^{2}}x=1$
Complete step by step solution: We are given an equation $4{{\cos }^{2}}x+6{{\sin }^{2}}x=5$ and we have to determine the general solution of this equation.
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, so we will use in the given equation and simplify.
$\begin{align}
& 4{{\cos }^{2}}x+6{{\sin }^{2}}x=5 \\
& 4{{\cos }^{2}}x+4{{\sin }^{2}}x+2{{\sin }^{2}}x=5 \\
& 4({{\sin }^{2}}x+{{\cos }^{2}}x)+2{{\sin }^{2}}x=5 \\
& 4+2{{\sin }^{2}}x=5 \\
& 2{{\sin }^{2}}x=1 \\
& {{\sin }^{2}}x=\dfrac{1}{2} \\
& \sin x=\pm \dfrac{1}{\sqrt{2}}
\end{align}$
Now we know that $\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ and $\sin \left( -\dfrac{\pi }{4} \right)=-\dfrac{1}{\sqrt{2}}$so,
$\sin x=\sin \dfrac{\pi }{4}$ or $\sin x=\sin \left( -\dfrac{\pi }{4} \right)$
We will now apply the theorem here to get the solution of the equation.
$x=n\pi +\dfrac{\pi }{4}$ or $x=n\pi -\dfrac{\pi }{4}$
Therefore the solution will be \[x=n\pi \pm \dfrac{\pi }{4}\] where $n$is an integer.
The general solution of the trigonometric equation $\cos p\theta =\cos q\theta $ such that $p\ne q$,is $\theta =\dfrac{2n\pi }{p\pm q}$
Option ‘B’ is correct
Note: Instead of using this formula ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ we could have also used the formula ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ and substituted in the given equation. Both the formulas are almost similar and derive the same resultant equation.
The domain of the trigonometric function sin is set of all of the real numbers but its range is in between $\left[ -1,1 \right]$. In a right angled triangle, it can be defined as the ratio of perpendicular side of the triangle to the hypotenuse of the triangle.
Formula Used: ${{\sin }^{2}}x+{{\cos }^{2}}x=1$
Complete step by step solution: We are given an equation $4{{\cos }^{2}}x+6{{\sin }^{2}}x=5$ and we have to determine the general solution of this equation.
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, so we will use in the given equation and simplify.
$\begin{align}
& 4{{\cos }^{2}}x+6{{\sin }^{2}}x=5 \\
& 4{{\cos }^{2}}x+4{{\sin }^{2}}x+2{{\sin }^{2}}x=5 \\
& 4({{\sin }^{2}}x+{{\cos }^{2}}x)+2{{\sin }^{2}}x=5 \\
& 4+2{{\sin }^{2}}x=5 \\
& 2{{\sin }^{2}}x=1 \\
& {{\sin }^{2}}x=\dfrac{1}{2} \\
& \sin x=\pm \dfrac{1}{\sqrt{2}}
\end{align}$
Now we know that $\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ and $\sin \left( -\dfrac{\pi }{4} \right)=-\dfrac{1}{\sqrt{2}}$so,
$\sin x=\sin \dfrac{\pi }{4}$ or $\sin x=\sin \left( -\dfrac{\pi }{4} \right)$
We will now apply the theorem here to get the solution of the equation.
$x=n\pi +\dfrac{\pi }{4}$ or $x=n\pi -\dfrac{\pi }{4}$
Therefore the solution will be \[x=n\pi \pm \dfrac{\pi }{4}\] where $n$is an integer.
The general solution of the trigonometric equation $\cos p\theta =\cos q\theta $ such that $p\ne q$,is $\theta =\dfrac{2n\pi }{p\pm q}$
Option ‘B’ is correct
Note: Instead of using this formula ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ we could have also used the formula ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ and substituted in the given equation. Both the formulas are almost similar and derive the same resultant equation.
The domain of the trigonometric function sin is set of all of the real numbers but its range is in between $\left[ -1,1 \right]$. In a right angled triangle, it can be defined as the ratio of perpendicular side of the triangle to the hypotenuse of the triangle.
Recently Updated Pages
JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Introduction to Dimensions: Understanding the Basics

Instantaneous Velocity Explained: Formula, Examples & Graphs

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

