
The rolling object rolls without slipping down an incline plane (angle of inclination \[\theta \]), then the minimum acceleration it can have is:
(A) \[g\sin \theta \]
(B) \[\dfrac{{2g\sin \theta }}{3}\]
(C) \[\dfrac{{g\sin \theta }}{2}\]
(D) zero
Answer
148.5k+ views
Hint: We will first apply Newton’s laws of motion to calculate acceleration on an inclined plane for pure rolling. We can also directly use the formula for acceleration: -
\[a = \dfrac{{g\sin \theta }}{{1 + \dfrac{I}{{m{R^2}}}}}\]
Where,
a = acceleration of the rolling body on the incline. (pure rolling)
\[\theta \] = inclination of the plane from horizontal.
g = acceleration due to gravity.
I = moment of inertia of the body about its centre of mass.
R = radius of the rolling body.
After calculating this acceleration, we will check for its minimum possible value.
Complete step by step solution

Figure 1/Pure Rolling on an inclined Plane
We will apply Newton’s Law of motion along the incline: -
\[\sum F = m\overrightarrow a \]
Where,
\[\sum F = \] Net Force acting on the body.
M = mass of the body.
a = acceleration of the body in the direction of force.
\[mg\sin \theta - f = ma\] . . . (1)
We will apply newton’s Law for rotational mechanics: -
\[\sum \tau = I\alpha \]
Where,
\[\sum \tau \] = Net Torque acting on the body.
I = Inertia of the body about centre of mass.
\[\alpha \] = Angular Acceleration of the body.
\[f \times R = I \times \dfrac{a}{R}\] (using \[a = \alpha R\] )
\[f = \dfrac{{Ia}}{{{R^2}}}\] . . . (2)
Adding (1) and (2) we get: -
\[mg\sin \theta = ma + \dfrac{{Ia}}{{{R^2}}}\]
\[g\sin \theta = a + \dfrac{{Ia}}{{m{R^2}}}\]
\[g\sin \theta = a(1 + \dfrac{I}{{m{R^2}}})\]
\[ \Rightarrow a = \dfrac{{g\sin \theta }}{{1 + \dfrac{I}{{m{R^2}}}}}\]
Now, in the above formula we see that acceleration will be minimum when the denominator = \[1 + \dfrac{I}{{m{R^2}}}\] will be maximum. The denominator will be maximum for the maximum value of I.
I have its maximum possible value for a ring which is ‘mR$^2$’. Thus, we take \[I = m{R^2}\] .
Now, acceleration becomes: -
\[a = \dfrac{{g\sin \theta }}{{1 + \dfrac{{m{R^2}}}{{m{R^2}}}}}\]
\[a = \dfrac{{g\sin \theta }}{{1 + 1}}\]
\[ \Rightarrow a = \dfrac{{g\sin \theta }}{2}\]
Hence, option(c) is correct.
Note
(A) In the above question, it is stated that the object rolls without slipping. This is the case for pure rolling. Hence, frictional force will be self-adjusting and not equal to maximum value of friction, that is, \[{\mu _s}N\] . Thus, do not keep f = \[{\mu _s}N\] in the above question to calculate acceleration using eq-(1).
(B) However, this is exactly what is done to calculate acceleration when the rolling motion is not pure. In that case, acceleration is given by the following equation: -
\[a = g\sin \theta - {\mu _k}\cos \theta \] (for impure rolling motion)
(C) Also, remember that the relation: - “ \[a = \alpha R\] ” is only valid in case of pure rolling motion and that is why we were able to use this relation in the above question.
\[a = \dfrac{{g\sin \theta }}{{1 + \dfrac{I}{{m{R^2}}}}}\]
Where,
a = acceleration of the rolling body on the incline. (pure rolling)
\[\theta \] = inclination of the plane from horizontal.
g = acceleration due to gravity.
I = moment of inertia of the body about its centre of mass.
R = radius of the rolling body.
After calculating this acceleration, we will check for its minimum possible value.
Complete step by step solution

Figure 1/Pure Rolling on an inclined Plane
We will apply Newton’s Law of motion along the incline: -
\[\sum F = m\overrightarrow a \]
Where,
\[\sum F = \] Net Force acting on the body.
M = mass of the body.
a = acceleration of the body in the direction of force.
\[mg\sin \theta - f = ma\] . . . (1)
We will apply newton’s Law for rotational mechanics: -
\[\sum \tau = I\alpha \]
Where,
\[\sum \tau \] = Net Torque acting on the body.
I = Inertia of the body about centre of mass.
\[\alpha \] = Angular Acceleration of the body.
\[f \times R = I \times \dfrac{a}{R}\] (using \[a = \alpha R\] )
\[f = \dfrac{{Ia}}{{{R^2}}}\] . . . (2)
Adding (1) and (2) we get: -
\[mg\sin \theta = ma + \dfrac{{Ia}}{{{R^2}}}\]
\[g\sin \theta = a + \dfrac{{Ia}}{{m{R^2}}}\]
\[g\sin \theta = a(1 + \dfrac{I}{{m{R^2}}})\]
\[ \Rightarrow a = \dfrac{{g\sin \theta }}{{1 + \dfrac{I}{{m{R^2}}}}}\]
Now, in the above formula we see that acceleration will be minimum when the denominator = \[1 + \dfrac{I}{{m{R^2}}}\] will be maximum. The denominator will be maximum for the maximum value of I.
I have its maximum possible value for a ring which is ‘mR$^2$’. Thus, we take \[I = m{R^2}\] .
Now, acceleration becomes: -
\[a = \dfrac{{g\sin \theta }}{{1 + \dfrac{{m{R^2}}}{{m{R^2}}}}}\]
\[a = \dfrac{{g\sin \theta }}{{1 + 1}}\]
\[ \Rightarrow a = \dfrac{{g\sin \theta }}{2}\]
Hence, option(c) is correct.
Note
(A) In the above question, it is stated that the object rolls without slipping. This is the case for pure rolling. Hence, frictional force will be self-adjusting and not equal to maximum value of friction, that is, \[{\mu _s}N\] . Thus, do not keep f = \[{\mu _s}N\] in the above question to calculate acceleration using eq-(1).
(B) However, this is exactly what is done to calculate acceleration when the rolling motion is not pure. In that case, acceleration is given by the following equation: -
\[a = g\sin \theta - {\mu _k}\cos \theta \] (for impure rolling motion)
(C) Also, remember that the relation: - “ \[a = \alpha R\] ” is only valid in case of pure rolling motion and that is why we were able to use this relation in the above question.
Recently Updated Pages
Difference Between Mass and Weight

Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2023 (January 29th Shift 1) Physics Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2022 (June 24th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Electrical Field of Charged Spherical Shell - JEE

A boy wants to throw a ball from a point A so as to class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
