Answer
Verified
79.2k+ views
Hint: Start by taking the given equation as function of x or f(x) and differentiate with respect to x . Check whether f’(x) obtained is increasing or decreasing , if it is increasing then it will have at most 1 real root.
Complete step-by-step answer:
Given, $2{x^3} + 3x + k = 0$
Let $f(x) = 2{x^3} + 3x + k$
Differentiating with respect to x , we get
Here we will use the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$
$
f'(x) = 6{x^2} + 3 \\
f'(x) > 0 \\
$
As for any value of x, f’(x) can never be negative because of the square term involved.
f’(x) is a strictly increasing function and has at most 1 real root .
And we know , if a polynomial of odd degree, in this case it is 3, has exactly 1 real root.
So, f(x) = has exactly one real root.
We see that the results found do not satisfy the conditions.
Therefore, k does not exist.
So , option C is the correct answer.
Note: Students must know the principle of differentiation , nature of function , graph plotting etc in order to solve such similar problems. Questions can also be asked in such a manner which would demand the application of Lagrange’s mean value theorem(LMVT) , Intermediate value theorem(IVT) , Rolle’s theorem, and are recommended to be practised very well as they make the approach to the solution very easy meanwhile giving valuable information about the function too.
Complete step-by-step answer:
Given, $2{x^3} + 3x + k = 0$
Let $f(x) = 2{x^3} + 3x + k$
Differentiating with respect to x , we get
Here we will use the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$
$
f'(x) = 6{x^2} + 3 \\
f'(x) > 0 \\
$
As for any value of x, f’(x) can never be negative because of the square term involved.
f’(x) is a strictly increasing function and has at most 1 real root .
And we know , if a polynomial of odd degree, in this case it is 3, has exactly 1 real root.
So, f(x) = has exactly one real root.
We see that the results found do not satisfy the conditions.
Therefore, k does not exist.
So , option C is the correct answer.
Note: Students must know the principle of differentiation , nature of function , graph plotting etc in order to solve such similar problems. Questions can also be asked in such a manner which would demand the application of Lagrange’s mean value theorem(LMVT) , Intermediate value theorem(IVT) , Rolle’s theorem, and are recommended to be practised very well as they make the approach to the solution very easy meanwhile giving valuable information about the function too.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
The IUPAC name of the following compound is A Propane123tricarbonitrile class 12 chemistry JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Choose the correct statements A A dimensionally correct class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main