
The real number k for which the equation $2{x^3} + 3x + k = 0$, has two distinct real roots in [0, 1]
(A). Lies between 2 and 3
(B). Lies between 1 and 0
(C). Does not exist
(D). Lies between 1 and 2
Answer
232.8k+ views
Hint: Start by taking the given equation as function of x or f(x) and differentiate with respect to x . Check whether f’(x) obtained is increasing or decreasing , if it is increasing then it will have at most 1 real root.
Complete step-by-step answer:
Given, $2{x^3} + 3x + k = 0$
Let $f(x) = 2{x^3} + 3x + k$
Differentiating with respect to x , we get
Here we will use the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$
$
f'(x) = 6{x^2} + 3 \\
f'(x) > 0 \\
$
As for any value of x, f’(x) can never be negative because of the square term involved.
f’(x) is a strictly increasing function and has at most 1 real root .
And we know , if a polynomial of odd degree, in this case it is 3, has exactly 1 real root.
So, f(x) = has exactly one real root.
We see that the results found do not satisfy the conditions.
Therefore, k does not exist.
So , option C is the correct answer.
Note: Students must know the principle of differentiation , nature of function , graph plotting etc in order to solve such similar problems. Questions can also be asked in such a manner which would demand the application of Lagrange’s mean value theorem(LMVT) , Intermediate value theorem(IVT) , Rolle’s theorem, and are recommended to be practised very well as they make the approach to the solution very easy meanwhile giving valuable information about the function too.
Complete step-by-step answer:
Given, $2{x^3} + 3x + k = 0$
Let $f(x) = 2{x^3} + 3x + k$
Differentiating with respect to x , we get
Here we will use the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$
$
f'(x) = 6{x^2} + 3 \\
f'(x) > 0 \\
$
As for any value of x, f’(x) can never be negative because of the square term involved.
f’(x) is a strictly increasing function and has at most 1 real root .
And we know , if a polynomial of odd degree, in this case it is 3, has exactly 1 real root.
So, f(x) = has exactly one real root.
We see that the results found do not satisfy the conditions.
Therefore, k does not exist.
So , option C is the correct answer.
Note: Students must know the principle of differentiation , nature of function , graph plotting etc in order to solve such similar problems. Questions can also be asked in such a manner which would demand the application of Lagrange’s mean value theorem(LMVT) , Intermediate value theorem(IVT) , Rolle’s theorem, and are recommended to be practised very well as they make the approach to the solution very easy meanwhile giving valuable information about the function too.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

