
The reading of a meter which reads pressure is fitted in a closed pipe is $\text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{N}{{\text{m}}^{-2}}$ on the opening the value of the pipe, the reading of that meter reduces to $\text{5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{N}{{\text{m}}^{-2}}$. The speed of water flowing in the pipe is?
Answer
233.1k+ views
Hint: In order to solve this question we will apply Bernoulli's principle when the pipe was closed and after it was opened. Only the value of the initial and final pressure is given in the question. It is to be assumed that the atmospheric pressure remains constant. Bernoulli’s equation can be summarized as the total pressure is the sum of static pressure and dynamic pressure.
Formula used:
${{\text{P}}_{\text{i}}}\ \text{=}\ {{\text{P}}_{\text{f}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}^{\text{2}}}$
Here ${{\text{P}}_{\text{i}}}$ is a Initial static pressure
${{\text{P}}_{\text{f}}}$ is a final pressure
$\text{P}$ is the density of water
$\text{V}$ is the velocity of water.
Complete step by step solution:
Using Bernoulli’s principle we get
${{\text{P}}_{\text{1}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{P}}_{\text{1}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{2}\ }}\ \ \text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\left( \text{1} \right)$
Initially the value is closed, so velocity of water I.e. ${{\text{V}}_{\text{1}}}\text{=0}$
$\text{ }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}\ }}\text{=}\ {{\text{h}}_{\text{2}\ }}\ \text{=0}$
Both are flowing at same reference point

Now, putting the value ${{\text{V}}_{\text{1}}}\text{=}\ \text{0}\ \text{ }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}}}\text{=}{{\text{h}}_{\text{2}\ }}\text{=0}$
We get,
${{\text{P}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}$
Here ${{\text{P}}_{\text{1}}}$ is the initial pressure
${{\text{P}}_{\text{2}}}$ is the final pressure when the valve is open
So, further
$\Rightarrow {{\text{P}}_{\text{1}}}\text{=}{{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\ \text{=}\ \dfrac{\text{2}\left( {{\text{P}}_{\text{1}}}\text{-}{{\text{P}}_{\text{2}}} \right)}{\text{P}}$
Here $\text{ }\!\!\rho\!\!\text{ }\ \text{=}\ \text{1000kg/}{{\text{m}}^{\text{3}}}$
${{\text{P}}_{\text{1}}}\ \text{=}\ \text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{N/}{{\text{M}}^{\text{2}}}$
${{\text{P}}_{\text{2}}}\ \text{=}\ \text{5}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{N/}{{\text{M}}^{\text{2}}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\ \text{=}\ \dfrac{\text{2}\left( \text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{-5}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}} \right)}{\text{1}{{\text{0}}^{\text{3}}}}$
$=\ \dfrac{2\left( 0.5\times {{10}^{15}} \right)}{{{10}^{3}}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\text{=}\dfrac{\text{1}{{\text{0}}^{\text{15}}}}{\text{1}{{\text{0}}^{\text{3}}}}\ \text{=}\ \text{1}{{\text{0}}^{\text{15-3}}}\ \text{=}\ \text{1}{{\text{0}}^{\text{12}}}$
So,
${{\text{V}}_{\text{2}}}\text{=}\ \text{1}{{\text{0}}^{\text{6}}}\text{m/s}$
So, the speed of the water is $\text{1}{{\text{0}}^{\text{6}}}\text{m/s}$.
Note: Bernoulli’s principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid’s potential energy.
Principle: Within a horizontal flow of fluid, points of higher fluid speed will have less pressure than points of slower fluid speed.
Here is a way to express kinetic energy is to do work on it.
This is expressed by the work energy principle
$\text{ }\!\!\Delta\!\!\text{ }{{\text{W}}_{\text{external}}}\ \text{= }\!\!\Delta\!\!\text{ K}\ \text{=}\ \dfrac{\text{1}}{\text{2}}\text{m}{{\text{V}}_{\text{f}}}^{\text{2}}\text{-}\dfrac{\text{1}}{\text{2}}\text{m}{{\text{V}}_{\text{i}}}^{\text{2}}$
Bernoulli’s equation is usually used in isentropic fluids.
In order to solve we have to use Bernoulli’s equation which is given by
${{\text{P}}_{\text{1}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{P}}_{\text{1}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{2}\ }}$
Here the value is closed initially so ${{\text{V}}_{\text{1}\ }}\text{=0 }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}\ }}\text{ }\!\!\And\!\!\text{ }{{\text{h}}_{\text{2}\ }}\text{=0,}$ So, by putting these values we can do this question.
Formula used:
${{\text{P}}_{\text{i}}}\ \text{=}\ {{\text{P}}_{\text{f}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}^{\text{2}}}$
Here ${{\text{P}}_{\text{i}}}$ is a Initial static pressure
${{\text{P}}_{\text{f}}}$ is a final pressure
$\text{P}$ is the density of water
$\text{V}$ is the velocity of water.
Complete step by step solution:
Using Bernoulli’s principle we get
${{\text{P}}_{\text{1}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{P}}_{\text{1}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{2}\ }}\ \ \text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\left( \text{1} \right)$
Initially the value is closed, so velocity of water I.e. ${{\text{V}}_{\text{1}}}\text{=0}$
$\text{ }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}\ }}\text{=}\ {{\text{h}}_{\text{2}\ }}\ \text{=0}$
Both are flowing at same reference point

Now, putting the value ${{\text{V}}_{\text{1}}}\text{=}\ \text{0}\ \text{ }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}}}\text{=}{{\text{h}}_{\text{2}\ }}\text{=0}$
We get,
${{\text{P}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}$
Here ${{\text{P}}_{\text{1}}}$ is the initial pressure
${{\text{P}}_{\text{2}}}$ is the final pressure when the valve is open
So, further
$\Rightarrow {{\text{P}}_{\text{1}}}\text{=}{{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\ \text{=}\ \dfrac{\text{2}\left( {{\text{P}}_{\text{1}}}\text{-}{{\text{P}}_{\text{2}}} \right)}{\text{P}}$
Here $\text{ }\!\!\rho\!\!\text{ }\ \text{=}\ \text{1000kg/}{{\text{m}}^{\text{3}}}$
${{\text{P}}_{\text{1}}}\ \text{=}\ \text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{N/}{{\text{M}}^{\text{2}}}$
${{\text{P}}_{\text{2}}}\ \text{=}\ \text{5}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{N/}{{\text{M}}^{\text{2}}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\ \text{=}\ \dfrac{\text{2}\left( \text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{-5}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}} \right)}{\text{1}{{\text{0}}^{\text{3}}}}$
$=\ \dfrac{2\left( 0.5\times {{10}^{15}} \right)}{{{10}^{3}}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\text{=}\dfrac{\text{1}{{\text{0}}^{\text{15}}}}{\text{1}{{\text{0}}^{\text{3}}}}\ \text{=}\ \text{1}{{\text{0}}^{\text{15-3}}}\ \text{=}\ \text{1}{{\text{0}}^{\text{12}}}$
So,
${{\text{V}}_{\text{2}}}\text{=}\ \text{1}{{\text{0}}^{\text{6}}}\text{m/s}$
So, the speed of the water is $\text{1}{{\text{0}}^{\text{6}}}\text{m/s}$.
Note: Bernoulli’s principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid’s potential energy.
Principle: Within a horizontal flow of fluid, points of higher fluid speed will have less pressure than points of slower fluid speed.
Here is a way to express kinetic energy is to do work on it.
This is expressed by the work energy principle
$\text{ }\!\!\Delta\!\!\text{ }{{\text{W}}_{\text{external}}}\ \text{= }\!\!\Delta\!\!\text{ K}\ \text{=}\ \dfrac{\text{1}}{\text{2}}\text{m}{{\text{V}}_{\text{f}}}^{\text{2}}\text{-}\dfrac{\text{1}}{\text{2}}\text{m}{{\text{V}}_{\text{i}}}^{\text{2}}$
Bernoulli’s equation is usually used in isentropic fluids.
In order to solve we have to use Bernoulli’s equation which is given by
${{\text{P}}_{\text{1}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{P}}_{\text{1}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{2}\ }}$
Here the value is closed initially so ${{\text{V}}_{\text{1}\ }}\text{=0 }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}\ }}\text{ }\!\!\And\!\!\text{ }{{\text{h}}_{\text{2}\ }}\text{=0,}$ So, by putting these values we can do this question.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

