
The ratio of wavelength of the last line of Balmer series and the last line of Lyman series is:
A) 0.5
B) 2
C) 1
D) 4
Answer
135k+ views
Hint: The emission spectrum of the hydrogen atom is classified in five series: Lyman, Balmer, Paschan, Bracket and fund. The Lyman series comes under the ultraviolet region and the remaining series are under infrared.
Complete step by step solution:
According to the question it is given that there are two series wavelengths, the last line of Balmer Series and Lyman Series.
The expression for emission spectrum is written as shown below.
$ \Rightarrow \dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{p^2}}} - \dfrac{1}{{{n^2}}}} \right)$
Where, $\lambda $ is the wavelength, $R$ is Rydberg constant.
For Hydrogen atom, We know that $Z = 1$,
$ \Rightarrow \dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{p^2}}} - \dfrac{1}{{{n^2}}}} \right)$
For Lyman series, We know that $p = 1$, $n = \infty $,
So, the emission spectrum is written as shown below.
$
\Rightarrow \dfrac{1}{{{\lambda _L}}} = R\left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{\infty ^2}}}} \right) \\
\Rightarrow \dfrac{1}{{{\lambda _L}}} = R \\
$
This is the equation for the Lyman series as given above.
For Balmer series, We know that $p = 2$, $n = \infty $
So, the emission spectrum is written as shown below.
$
\Rightarrow \dfrac{1}{{{\lambda _B}}} = R\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{\infty ^2}}}} \right) \\
\Rightarrow \dfrac{1}{{{\lambda _B}}} = \dfrac{R}{4} \\
$
This is the equation for the Balmer series.
Take the ratio of both the equation of Lyman and Balmer series and it is written as shown below.
\[\begin{align}
& \Rightarrow \dfrac{\dfrac{1}{{{\lambda }_{L}}}}{\dfrac{1}{{{\lambda }_{B}}}}=\dfrac{R}{R/4} \\
& \therefore \dfrac{{{\lambda }_{B}}}{{{\lambda }_{L}}}=4 \\
\end{align}\]
So, from the above calculation it is concluded that the ratio of wavelength of the last line of the Balmer series and the last line of the Lyman series is $4$.
Hence, the option (D) is correct.
Note: The wavelength of the Balmer and Lyman series can be calculated using the emission spectrum expression. The value of the variable p and n are different for all series.
For Lyman series, we know that $p = 1$, $n = \infty $
For Balmer series, we know that $p = 2$, $n = \infty $
For Paschen series, we know that $p = 3$, $n = \infty $
For Bracket series, we know that $p = 4$, $n = \infty $
For Fund series, we know that $p = 5$, $n = \infty $
Complete step by step solution:
According to the question it is given that there are two series wavelengths, the last line of Balmer Series and Lyman Series.
The expression for emission spectrum is written as shown below.
$ \Rightarrow \dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{p^2}}} - \dfrac{1}{{{n^2}}}} \right)$
Where, $\lambda $ is the wavelength, $R$ is Rydberg constant.
For Hydrogen atom, We know that $Z = 1$,
$ \Rightarrow \dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{p^2}}} - \dfrac{1}{{{n^2}}}} \right)$
For Lyman series, We know that $p = 1$, $n = \infty $,
So, the emission spectrum is written as shown below.
$
\Rightarrow \dfrac{1}{{{\lambda _L}}} = R\left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{\infty ^2}}}} \right) \\
\Rightarrow \dfrac{1}{{{\lambda _L}}} = R \\
$
This is the equation for the Lyman series as given above.
For Balmer series, We know that $p = 2$, $n = \infty $
So, the emission spectrum is written as shown below.
$
\Rightarrow \dfrac{1}{{{\lambda _B}}} = R\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{\infty ^2}}}} \right) \\
\Rightarrow \dfrac{1}{{{\lambda _B}}} = \dfrac{R}{4} \\
$
This is the equation for the Balmer series.
Take the ratio of both the equation of Lyman and Balmer series and it is written as shown below.
\[\begin{align}
& \Rightarrow \dfrac{\dfrac{1}{{{\lambda }_{L}}}}{\dfrac{1}{{{\lambda }_{B}}}}=\dfrac{R}{R/4} \\
& \therefore \dfrac{{{\lambda }_{B}}}{{{\lambda }_{L}}}=4 \\
\end{align}\]
So, from the above calculation it is concluded that the ratio of wavelength of the last line of the Balmer series and the last line of the Lyman series is $4$.
Hence, the option (D) is correct.
Note: The wavelength of the Balmer and Lyman series can be calculated using the emission spectrum expression. The value of the variable p and n are different for all series.
For Lyman series, we know that $p = 1$, $n = \infty $
For Balmer series, we know that $p = 2$, $n = \infty $
For Paschen series, we know that $p = 3$, $n = \infty $
For Bracket series, we know that $p = 4$, $n = \infty $
For Fund series, we know that $p = 5$, $n = \infty $
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Displacement-Time Graph and Velocity-Time Graph for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

JEE Main Chemistry Question Paper with Answer Keys and Solutions
