
The power of the sound from the speaker of a radio is 20 milliWatt. By turning the knob of the volume control the power of the sound is increased to 400 milliWatt. The power increase in decibels as compared to the original power is?
A) $13\,db$
B) $10\,db$
C) $20\,db$
D) $800\,db$
Answer
154.8k+ views
Hint: We will calculate the increase in intensity in power by using the sound intensity formula. Just remember, the sound intensity level is the level of the intensity of a sound relative to a reference value. Also, it is the logarithmic expression that is relative to a reference value of sound intensity.
Complete step by step solution:
We are given that
${P_1} = 20\,mW$(Power of the sound from the speaker)
${P_2} = 400\,mW$(Power of the sound increased)
As we all know that intensity is the power per unit area.
Now, For a given source, \[P\,\alpha \,I\].
Where $P$ is the power and $I$ is the intensity in the sound.
If ${L_1}$and ${L_2}$ are the initial and final level of loudness, then
${L_1} = 10\log (\dfrac{{{I_1}}}{{{I_0}}})$
And ${L_2} = 10\log (\dfrac{{{I_2}}}{{{I_0}}})$
$ \Rightarrow {L_2} - {L_1} = 10\log (\dfrac{{{I_2}}}{{{I_1}}})$
Therefore, an increase in loudness of sound can be calculated as
$\Delta L = 10\log (\dfrac{{{P_2}}}{{{P_1}}})$
\[ \Rightarrow \Delta L = 10\log (\dfrac{{400}}{{20}})\]
$ \Rightarrow \,\Delta L = 10\log (20)$
$\therefore \,$ $\Delta L = 13dB$
Therefore, the increase in power as compared to the original power is$13\,db$.
Therefore, option (A) is the correct option.
Additional Information:
As we know, the Sound intensity level is the level of intensity of sound which is relative to a reference value. It is denoted by ${L_I}$ and is expressed as
${L_I} = \dfrac{1}{2}\ln (\dfrac{I}{{{I_0}}})\,Np$
Or ${L_I} = {\log _{10}}(\dfrac{I}{{{I_0}}})\,B$
Or ${L_I} = 10\log (\dfrac{I}{{{I_0}}})\,dB$
Where ${L_I}$ is the sound intensity level, $I$ is the intensity of sound, and ${I_0}$ is the reference sound intensity.
Here,$Np$, $B$, and $dB$ are the units in which sound intensity level could be measured and these are abbreviated as $neper$, $bel$, and $decibel$.
Note: As we know, ${I_0}$ is the reference sound intensity and its value in the air is given by
${I_0} = 1\,pW/{m^2}$(Pico watts per meter square).
It is the least value of the sound intensity but it is hearable by the human ear at room conditions.
Complete step by step solution:
We are given that
${P_1} = 20\,mW$(Power of the sound from the speaker)
${P_2} = 400\,mW$(Power of the sound increased)
As we all know that intensity is the power per unit area.
Now, For a given source, \[P\,\alpha \,I\].
Where $P$ is the power and $I$ is the intensity in the sound.
If ${L_1}$and ${L_2}$ are the initial and final level of loudness, then
${L_1} = 10\log (\dfrac{{{I_1}}}{{{I_0}}})$
And ${L_2} = 10\log (\dfrac{{{I_2}}}{{{I_0}}})$
$ \Rightarrow {L_2} - {L_1} = 10\log (\dfrac{{{I_2}}}{{{I_1}}})$
Therefore, an increase in loudness of sound can be calculated as
$\Delta L = 10\log (\dfrac{{{P_2}}}{{{P_1}}})$
\[ \Rightarrow \Delta L = 10\log (\dfrac{{400}}{{20}})\]
$ \Rightarrow \,\Delta L = 10\log (20)$
$\therefore \,$ $\Delta L = 13dB$
Therefore, the increase in power as compared to the original power is$13\,db$.
Therefore, option (A) is the correct option.
Additional Information:
As we know, the Sound intensity level is the level of intensity of sound which is relative to a reference value. It is denoted by ${L_I}$ and is expressed as
${L_I} = \dfrac{1}{2}\ln (\dfrac{I}{{{I_0}}})\,Np$
Or ${L_I} = {\log _{10}}(\dfrac{I}{{{I_0}}})\,B$
Or ${L_I} = 10\log (\dfrac{I}{{{I_0}}})\,dB$
Where ${L_I}$ is the sound intensity level, $I$ is the intensity of sound, and ${I_0}$ is the reference sound intensity.
Here,$Np$, $B$, and $dB$ are the units in which sound intensity level could be measured and these are abbreviated as $neper$, $bel$, and $decibel$.
Note: As we know, ${I_0}$ is the reference sound intensity and its value in the air is given by
${I_0} = 1\,pW/{m^2}$(Pico watts per meter square).
It is the least value of the sound intensity but it is hearable by the human ear at room conditions.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
