
The pointer reading v/s load graph for a spring balance is as given in the figure. The spring constant is

(A) $0.1\,kg/cm$
(B) $5\,kg/cm$
(C) $0.3\,kg/cm$
(D) $1\,kg/cm$
Answer
145.5k+ views
Hint To find the answer, you first need to know that spring constant of a spring is nothing but the restoring force of a spring generated due to unit extension produced in the spring due to the external force applied on the spring. Mathematically,
$k = \dfrac{F}{x}$
You can use the graph to find the value of the spring constant very easily once you find the slope of the graph.
Complete step by step answer
As explained in the hint section of the solution to the question, we firstly need to know what spring constant is and how it is defined mathematically as relation of restoring force produced and the extension brought into the spring due to the force applied.
The spring constant, $k$ , is nothing but the representative of how stiff the spring is. Stiffer springs, i.e. springs which are more difficult to stretch by the application of same amount of force, have higher spring constants. The spring constant is thus the ratio of restoring force created in the spring due to a unit extension brought into the spring due to the application of some external force.
Mathematically, spring constant can be given as:
$k = \dfrac{{{F_r}}}{x}$
Where, $k$ is the spring constant of the spring,
${F_r}$ is the restoring force in the spring,
$x$ is the extension brought into the spring due to the application of some external force
If we observe the graph, we can see that the slop can be given as:
$m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
Where, ${y_2},{y_1}$ are ordinates of the two points on the line in the graph and
${x_2},{x_1}$ are the abscissas of the two points on the line in the graph
If we find the value of the slope of the slope, we need to substitute the values of ordinates and abscissas of the two chosen points as:
$m = \dfrac{{20 - 10}}{{3 - 2}}\,cm/kg$
$ \Rightarrow m = 10\,cm/kg$
Also, since the y-axis is the extension in the spring while x-axis is the applied external force which is then gets nullified by the spring’s restoring force, the slope can also be taken as:
$m = \dfrac{x}{F}$
Where $x$ is the extension brought into the spring while,
$F$ is the external force applied.
Since the spring ultimately achieves equilibrium in each case, we can say that:
${F_r} = F$
Thus, we can write the spring constant as:
$k = \dfrac{1}{m}$
Substituting the value of the slope of the line in the graph, we get the value of spring constant as:
$
k = \dfrac{1}{{10}}kg/cm \\
\Rightarrow k = 0.1\,kg/cm \\
$
As we can see, the correct answer to the question is option (A) since the value matches what we found out by solving the question.
Note Even though the value of force we took in the expression of spring constant and the slope turned out to be the same, remember that it would not be the same always. It was the same in our case as the spring was able to achieve equilibrium in each case and thus cancelled out the downwards force by the restoring force thus generated. Thus, the spring constant would not always be the same as the reciprocal of the slope of the graph.
$k = \dfrac{F}{x}$
You can use the graph to find the value of the spring constant very easily once you find the slope of the graph.
Complete step by step answer
As explained in the hint section of the solution to the question, we firstly need to know what spring constant is and how it is defined mathematically as relation of restoring force produced and the extension brought into the spring due to the force applied.
The spring constant, $k$ , is nothing but the representative of how stiff the spring is. Stiffer springs, i.e. springs which are more difficult to stretch by the application of same amount of force, have higher spring constants. The spring constant is thus the ratio of restoring force created in the spring due to a unit extension brought into the spring due to the application of some external force.
Mathematically, spring constant can be given as:
$k = \dfrac{{{F_r}}}{x}$
Where, $k$ is the spring constant of the spring,
${F_r}$ is the restoring force in the spring,
$x$ is the extension brought into the spring due to the application of some external force
If we observe the graph, we can see that the slop can be given as:
$m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
Where, ${y_2},{y_1}$ are ordinates of the two points on the line in the graph and
${x_2},{x_1}$ are the abscissas of the two points on the line in the graph
If we find the value of the slope of the slope, we need to substitute the values of ordinates and abscissas of the two chosen points as:
$m = \dfrac{{20 - 10}}{{3 - 2}}\,cm/kg$
$ \Rightarrow m = 10\,cm/kg$
Also, since the y-axis is the extension in the spring while x-axis is the applied external force which is then gets nullified by the spring’s restoring force, the slope can also be taken as:
$m = \dfrac{x}{F}$
Where $x$ is the extension brought into the spring while,
$F$ is the external force applied.
Since the spring ultimately achieves equilibrium in each case, we can say that:
${F_r} = F$
Thus, we can write the spring constant as:
$k = \dfrac{1}{m}$
Substituting the value of the slope of the line in the graph, we get the value of spring constant as:
$
k = \dfrac{1}{{10}}kg/cm \\
\Rightarrow k = 0.1\,kg/cm \\
$
As we can see, the correct answer to the question is option (A) since the value matches what we found out by solving the question.
Note Even though the value of force we took in the expression of spring constant and the slope turned out to be the same, remember that it would not be the same always. It was the same in our case as the spring was able to achieve equilibrium in each case and thus cancelled out the downwards force by the restoring force thus generated. Thus, the spring constant would not always be the same as the reciprocal of the slope of the graph.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
