
The point on the curve $y=12 x-x^{3}$ at which the gradient is zero are
A. $(0,2),(2,16)$
B. $(0,-2),(2,-16)$
C. $(2,-16),(-2,16)$
D. $(2,16),(-2,-16)$
Answer
217.5k+ views
Hint:
In the given question, gradient is zero and it is calculated by dividing the change in y coordinate by change in x coordinate. First we differentiate the given equation by applying the derivative power rule. After differentiating, we need to put the given point in the differentiated equation. Then we can find the point of the given curve.
Formula used:
If $y=f(x)+g(x)$, then $\dfrac{dy}{dx}=f'(x)+g'(x)$
$\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$
Complete Step by step solution:
Given that
$y=12 x-x^{3}$
Differentiate both the sides
We get
$\dfrac{dy}{dx}=\dfrac{d}{dx}(12x-{{x}^{3}})$
$\dfrac{d y}{ d x}=12-3 x^{2}$
Differentiation is the ratio of a slight change in one quantity to a little change in another that depends on the first quantity. If $y = f(x)$ and $f(x)$ are differentiable, then $f'(x)$ or $dy/dx$ is used to indicate the differentiation.
Equating gradient to zero.
$\dfrac{d y}{ d x}=12-3 x^{2}=0$
$x=\pm 2$
At these value of x, value of y:
$y=12x-{{x}^{3}}$
Put $x=+2$
$y=12(2)-{{(2)}^{3}}$
$y=24-8=16$
Now put $x=-2$
$y=12(-2)-{{(-2)}^{3}}$
$y=-24-(-8)$
$y=-16$
The points are $(2, 16)$ and $(-2, -16)$.
So the correct answer is option(D)
Note:
Remember that the gradient is positive when m is greater than zero and it is negative when m is less than zero. If m is equal to zero then it is a constant function. The gradient of two parallel lines is equal and also the product of the gradient of two perpendicular lines is -1.
In the given question, gradient is zero and it is calculated by dividing the change in y coordinate by change in x coordinate. First we differentiate the given equation by applying the derivative power rule. After differentiating, we need to put the given point in the differentiated equation. Then we can find the point of the given curve.
Formula used:
If $y=f(x)+g(x)$, then $\dfrac{dy}{dx}=f'(x)+g'(x)$
$\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$
Complete Step by step solution:
Given that
$y=12 x-x^{3}$
Differentiate both the sides
We get
$\dfrac{dy}{dx}=\dfrac{d}{dx}(12x-{{x}^{3}})$
$\dfrac{d y}{ d x}=12-3 x^{2}$
Differentiation is the ratio of a slight change in one quantity to a little change in another that depends on the first quantity. If $y = f(x)$ and $f(x)$ are differentiable, then $f'(x)$ or $dy/dx$ is used to indicate the differentiation.
Equating gradient to zero.
$\dfrac{d y}{ d x}=12-3 x^{2}=0$
$x=\pm 2$
At these value of x, value of y:
$y=12x-{{x}^{3}}$
Put $x=+2$
$y=12(2)-{{(2)}^{3}}$
$y=24-8=16$
Now put $x=-2$
$y=12(-2)-{{(-2)}^{3}}$
$y=-24-(-8)$
$y=-16$
The points are $(2, 16)$ and $(-2, -16)$.
So the correct answer is option(D)
Note:
Remember that the gradient is positive when m is greater than zero and it is negative when m is less than zero. If m is equal to zero then it is a constant function. The gradient of two parallel lines is equal and also the product of the gradient of two perpendicular lines is -1.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

