
The number of zeros that come after 1 for 10 million is:
A. 8
B. 7
C. 6
D. 9
Answer
139.5k+ views
Hint: The decimal numeral system is a base 10 system used to denote numbers. Ten digits or numbers are used to denote any decimal number. The million is a synonym for the natural number ${10^6}$. The number of zeros in 10 million can be found by counting the zeros after writing the number 10 million in number form.
Complete step by step answer:
The decimal system is used to denote the mathematical number and is the most commonly used system for representing numbers.
The decimal system is made up of ten digits that are 0,1,2,3,4,5,6,7,8 and 9.
Every number in the decimal system is made up of the above ten digits.
Any number represented in the decimal system uses a positional numeral system, that is the contribution of each digit in a number is different. The contribution of each place’s digit from the right differs by the factor of 10.
For the decimal number \[{a_n}{a_{n - 1}}....{a_2}{a_1}\], the value will be equal to ${a_n}{.10^{n - 1}} + {a_{n - 1}}{.10^{n - 2}} + ... + {a_2}.10 + {a_1}$.
The million is a synonym for the natural number with 1 in the seventh place with all six places before it being 0 . Thus the million is equal to one thousand thousand and is represented by $1,000,000$.
The number 10 million is therefore the natural number with 1 in the eight place with all zeros after it. The 10 million is equal to 10 thousand thousand and is represented by $10,000,000$.
The number of zeros after the 1 in the 10 million is therefore 7.
Thus option B is the correct answer.
Note: For the decimal number \[{a_n}{a_{n - 1}}....{a_2}{a_1}\], the value will be equal to ${a_n}{.10^{n - 1}} + {a_{n - 1}}{.10^{n - 2}} + ... + {a_2}.10 + {a_1}$. The million is equal to one thousand thousand and is represented by $1,000,000$. The million can be represented in scientific notation as $1 \times {10^6}$.
Complete step by step answer:
The decimal system is used to denote the mathematical number and is the most commonly used system for representing numbers.
The decimal system is made up of ten digits that are 0,1,2,3,4,5,6,7,8 and 9.
Every number in the decimal system is made up of the above ten digits.
Any number represented in the decimal system uses a positional numeral system, that is the contribution of each digit in a number is different. The contribution of each place’s digit from the right differs by the factor of 10.
For the decimal number \[{a_n}{a_{n - 1}}....{a_2}{a_1}\], the value will be equal to ${a_n}{.10^{n - 1}} + {a_{n - 1}}{.10^{n - 2}} + ... + {a_2}.10 + {a_1}$.
The million is a synonym for the natural number with 1 in the seventh place with all six places before it being 0 . Thus the million is equal to one thousand thousand and is represented by $1,000,000$.
The number 10 million is therefore the natural number with 1 in the eight place with all zeros after it. The 10 million is equal to 10 thousand thousand and is represented by $10,000,000$.
The number of zeros after the 1 in the 10 million is therefore 7.
Thus option B is the correct answer.
Note: For the decimal number \[{a_n}{a_{n - 1}}....{a_2}{a_1}\], the value will be equal to ${a_n}{.10^{n - 1}} + {a_{n - 1}}{.10^{n - 2}} + ... + {a_2}.10 + {a_1}$. The million is equal to one thousand thousand and is represented by $1,000,000$. The million can be represented in scientific notation as $1 \times {10^6}$.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2025 (Updated)

JEE Main Question Papers 2025

JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

Raoult's Law with Examples

Other Pages
NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume

NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas And Volumes Ex 11.3

NCERT Solutions for Class 9 Maths Chapter 9 Circles

NCERT Solutions for Class 9 Maths Chapter 12 Statistics

NCERT Solutions for Class 9 Maths Chapter 10 Heron'S Formula

NCERT Solutions for Class 9 Maths In Hindi Chapter 1 Number System
