
The number of the real roots of the equation ${\left( {x + 1} \right)^2} + \left| {x - 5} \right| = \dfrac{{27}}{4}$ is
Answer
218.1k+ views
Hint: Here, the equation ${\left( {x + 1} \right)^2} + \left| {x - 5} \right| = \dfrac{{27}}{4}$ is given. Make two cases in first one $x \geqslant 5$ where take modulus $\left| {x - 5} \right|$ as positive and in second case take modulus $\left| {x - 5} \right|$as negative for $x < 5$. After solving a quadratic equation find the roots using $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ and check whether the roots satisfy the case or not. If yes, then the roots are real.
Formula used:
General quadratic equation $a{x^2} + bx + c$ whose roots are $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step solution:
Given that,
${\left( {x + 1} \right)^2} + \left| {x - 5} \right| = \dfrac{{27}}{4}$
Case 1 –
For $x \geqslant 5$,
${\left( {x + 1} \right)^2} + \left( {x - 5} \right) = \dfrac{{27}}{4}$
${x^2} + 1 + 2x + x - 5 - \dfrac{{27}}{4} = 0$
\[{x^2} + 3x - \dfrac{{43}}{4} = 0\]
$4{x^2} + 12x - 43 = 0$
$x = \dfrac{{ - \left( {12} \right) \pm \sqrt {{{\left( {12} \right)}^2} - 4\left( 4 \right)\left( { - 43} \right)} }}{{2\left( 4 \right)}}$
$x = \dfrac{{ - 12 \pm \sqrt {832} }}{8}$
$x = \dfrac{{ - 12 \pm 28.8}}{8}$
$x = \dfrac{{ - 12 + 28.8}}{8},\dfrac{{ - 12 - 28.8}}{8}$
$x = 3.36, - 5.1$
The roots are not greater than or equal to $5$
Therefore, required roots are not real.
Case 2 –
For $x < 5$,
${\left( {x + 1} \right)^2} - \left( {x - 5} \right) = \dfrac{{27}}{4}$
${x^2} + 1 + 2x - x + 5 - \dfrac{{27}}{4} = 0$
\[{x^2} + x - \dfrac{3}{4} = 0\]
\[4{x^2} + 4x - 3 = 0\]
\[x = \dfrac{{ - 4 \pm \sqrt {{{\left( 4 \right)}^2} - 4\left( 4 \right)\left( { - 3} \right)} }}{{2\left( 4 \right)}}\]
\[x = \dfrac{{ - 4 \pm \sqrt {64} }}{8}\]
\[x = \dfrac{{ - 4 \pm 8}}{8}\]
\[x = 0.5, - 1.5\]
Hence, the equation ${\left( {x + 1} \right)^2} + \left| {x - 5} \right| = \dfrac{{27}}{4}$ has two real roots i.e., \[0.5, - 1.5\].
Hence, Option (3) is the correct answer.
Note: In this problem, students should note that if the modulus is present in the question then two cases will be there greater than or equal to and less than. Also, the alternative method to solve the quadratic equation is compare the equation with general equation $a{x^2} + bx + c$ and calculate the equation using $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Formula used:
General quadratic equation $a{x^2} + bx + c$ whose roots are $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step solution:
Given that,
${\left( {x + 1} \right)^2} + \left| {x - 5} \right| = \dfrac{{27}}{4}$
Case 1 –
For $x \geqslant 5$,
${\left( {x + 1} \right)^2} + \left( {x - 5} \right) = \dfrac{{27}}{4}$
${x^2} + 1 + 2x + x - 5 - \dfrac{{27}}{4} = 0$
\[{x^2} + 3x - \dfrac{{43}}{4} = 0\]
$4{x^2} + 12x - 43 = 0$
$x = \dfrac{{ - \left( {12} \right) \pm \sqrt {{{\left( {12} \right)}^2} - 4\left( 4 \right)\left( { - 43} \right)} }}{{2\left( 4 \right)}}$
$x = \dfrac{{ - 12 \pm \sqrt {832} }}{8}$
$x = \dfrac{{ - 12 \pm 28.8}}{8}$
$x = \dfrac{{ - 12 + 28.8}}{8},\dfrac{{ - 12 - 28.8}}{8}$
$x = 3.36, - 5.1$
The roots are not greater than or equal to $5$
Therefore, required roots are not real.
Case 2 –
For $x < 5$,
${\left( {x + 1} \right)^2} - \left( {x - 5} \right) = \dfrac{{27}}{4}$
${x^2} + 1 + 2x - x + 5 - \dfrac{{27}}{4} = 0$
\[{x^2} + x - \dfrac{3}{4} = 0\]
\[4{x^2} + 4x - 3 = 0\]
\[x = \dfrac{{ - 4 \pm \sqrt {{{\left( 4 \right)}^2} - 4\left( 4 \right)\left( { - 3} \right)} }}{{2\left( 4 \right)}}\]
\[x = \dfrac{{ - 4 \pm \sqrt {64} }}{8}\]
\[x = \dfrac{{ - 4 \pm 8}}{8}\]
\[x = 0.5, - 1.5\]
Hence, the equation ${\left( {x + 1} \right)^2} + \left| {x - 5} \right| = \dfrac{{27}}{4}$ has two real roots i.e., \[0.5, - 1.5\].
Hence, Option (3) is the correct answer.
Note: In this problem, students should note that if the modulus is present in the question then two cases will be there greater than or equal to and less than. Also, the alternative method to solve the quadratic equation is compare the equation with general equation $a{x^2} + bx + c$ and calculate the equation using $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

