
The number density of free electrons in a copper conductor as estimated is $8.5 \times {10^{28}}{m^{ - 3}}$. How long does an electron take to drift form one end of a wire 3.0 m long to its other end? The area of cross- section of the wire is $2.0 \times {10^{ - 6}}{m^2}$ and it is carrying a current of 3.0A.
Answer
155.4k+ views
Hint: In this problem we are going to write first all the forces which are acting on the rod. These include gravitational force, normal force and frictional force. And then by applying force balance we are going to get normal and friction force that the floor exerts on the rod.
When we give potential difference across some metal, an electric field is created within the metal piece. Due to the presence of the electric field, the free electrons of the metals start moving from lower to higher potential and a current flow is created in the opposite direction. The average uniform velocity of the free electrons is known as the drift velocity for that metal.
Formula Used:
$i = nAe{v_d}$
Complete answer:
Dependence of produced current on the cross-sectional area, drift velocity and number density of electron is shown by:
$i = nAe{v_d}$----(1)
Where,
i is the current through the conductor,
n is the free electron density within the conductor,
e is electron charge magnitude, $e = 1.6 \times {10^{ - 19}}C$
${v_d}$ is the drift velocity
First, rewrite the eq. (1) to find an expression of ${v_d}$in terms of other variables
${v_d} = \dfrac{i}{{nAe}}$
$ \Rightarrow {v_d} = \dfrac{3}{{8.5 \times {{10}^{28}}{m^{ - 3}} \times 2.0 \times {{10}^{ - 6}}{m^2} \times 1.6 \times {{10}^{ - 19}}}}$
$ \Rightarrow {v_d} = 1.103 \times {10^{ - 4}}$
Now the time an electron takes to drift form one end of a wire 3.0 m long to its other end is given by
$t = \dfrac{l}{{{v_d}}}$
Substituting the values, we get
$t = 27200$sec
Note: Many students have mistaken about the direction of drift velocity of the electrons. They think that the current direction is the same as the direction of drift velocity. But its totally wrong. Since, electrons are negatively charged particles so they always move from lower potential to higher potential but the direction of current is to be from higher to lower potential. Hence, their directions are completely opposite.
When we give potential difference across some metal, an electric field is created within the metal piece. Due to the presence of the electric field, the free electrons of the metals start moving from lower to higher potential and a current flow is created in the opposite direction. The average uniform velocity of the free electrons is known as the drift velocity for that metal.
Formula Used:
$i = nAe{v_d}$
Complete answer:
Dependence of produced current on the cross-sectional area, drift velocity and number density of electron is shown by:
$i = nAe{v_d}$----(1)
Where,
i is the current through the conductor,
n is the free electron density within the conductor,
e is electron charge magnitude, $e = 1.6 \times {10^{ - 19}}C$
${v_d}$ is the drift velocity
First, rewrite the eq. (1) to find an expression of ${v_d}$in terms of other variables
${v_d} = \dfrac{i}{{nAe}}$
$ \Rightarrow {v_d} = \dfrac{3}{{8.5 \times {{10}^{28}}{m^{ - 3}} \times 2.0 \times {{10}^{ - 6}}{m^2} \times 1.6 \times {{10}^{ - 19}}}}$
$ \Rightarrow {v_d} = 1.103 \times {10^{ - 4}}$
Now the time an electron takes to drift form one end of a wire 3.0 m long to its other end is given by
$t = \dfrac{l}{{{v_d}}}$
Substituting the values, we get
$t = 27200$sec
Note: Many students have mistaken about the direction of drift velocity of the electrons. They think that the current direction is the same as the direction of drift velocity. But its totally wrong. Since, electrons are negatively charged particles so they always move from lower potential to higher potential but the direction of current is to be from higher to lower potential. Hence, their directions are completely opposite.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

Displacement-Time Graph and Velocity-Time Graph for JEE

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic
