
The most general values of x for which $\sin x + \cos x = \mathop {\min }\limits_{a \in {\Bbb R}} \left\{ {1,{a^2} - 4a + 6} \right\}$ are given by:
$\eqalign{
& A.\,\,2n\pi ;n \in {\Bbb Z} \cr
& B.\,\,2n\pi + \dfrac{\pi }{2};n \in {\Bbb Z} \cr
& C.\,\,n\pi + {( - 1)^n}.\dfrac{\pi }{4} - \dfrac{\pi }{4};n \in {\Bbb Z} \cr
& D.\,\,2n\pi - \dfrac{\pi }{2};n \in {\Bbb Z} \cr} $
Answer
232.5k+ views
Hint: First we have to find the minimum value, that is we have to simplify the right hand side.Then simplify the equation to find the range of x there so that the equation holds.
Complete step by step solution:
Step1: We know that the value of a perfect square is always non-negative. So the minimum value may be zero.
$\eqalign{
& {a^2} - 4a + 6 \cr
& = {(a - 2)^2} + 2 \cr} $
Then taking the value of the perfect square to zero.
$\eqalign{
& {a^2} - 4a + 6\,\,is\,\,\operatorname{minimum} \,\,for\,\,a = 2 \cr
& so,\mathop {\min }\limits_{a \in { R}} \left\{ {{a^2} - 4a + 6} \right\} = {(2 - 2)^2} + 2 = 2 \cr} $.
Step2: Simplifying the right hand side, we get
$Now,\mathop {\,\,\min }\limits_{a \in {l R}} \left\{ {1,{a^2} - 4a + 6} \right\} = 1$
Step3: Now from the equation, we have
$$\eqalign{
& \sin x + \cos x = 1 \cr
& or,\dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x = \dfrac{1}{{\sqrt 2 }},\,\,both\,\,side\,\,dividing\,\,by\,\,\sqrt 2 \cr
& or,\sin x\cos \dfrac{\pi }{4} + \cos x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} \cr
& or,\sin \left( {x + \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} \cr
& or,\sin \left( {x + \dfrac{\pi }{4}} \right) = \sin \dfrac{\pi }{4} \cr
& or,x + \dfrac{\pi }{4} = n\pi + {( - 1)^n}.\dfrac{\pi }{4};n \in {\Bbb Z} \cr
& or,x = n\pi + {( - 1)^n}.\dfrac{\pi }{4} - \dfrac{\pi }{4};n \in {\Bbb Z} \cr} $$
Hence,The most general values of x are here, $n\pi + {( - 1)^n}.\dfrac{\pi }{4} - \dfrac{\pi }{4};n \in {\Bbb Z}$
Therefore,option C) is correct.
Note:
Here we use the formula $\sin x = \sin \alpha \Rightarrow x = n\pi + {( - 1)^n}\alpha ;n \in {\Bbb Z},\,the\,\,set\,\,of\,\,all\,\,\operatorname{integers} $. These are general values of x for which $\sin x = \sin \alpha $. If we want to solve such types of equations, we have to find out general values or all values satisfying that trigonometric equation.
Complete step by step solution:
Step1: We know that the value of a perfect square is always non-negative. So the minimum value may be zero.
$\eqalign{
& {a^2} - 4a + 6 \cr
& = {(a - 2)^2} + 2 \cr} $
Then taking the value of the perfect square to zero.
$\eqalign{
& {a^2} - 4a + 6\,\,is\,\,\operatorname{minimum} \,\,for\,\,a = 2 \cr
& so,\mathop {\min }\limits_{a \in { R}} \left\{ {{a^2} - 4a + 6} \right\} = {(2 - 2)^2} + 2 = 2 \cr} $.
Step2: Simplifying the right hand side, we get
$Now,\mathop {\,\,\min }\limits_{a \in {l R}} \left\{ {1,{a^2} - 4a + 6} \right\} = 1$
Step3: Now from the equation, we have
$$\eqalign{
& \sin x + \cos x = 1 \cr
& or,\dfrac{1}{{\sqrt 2 }}\sin x + \dfrac{1}{{\sqrt 2 }}\cos x = \dfrac{1}{{\sqrt 2 }},\,\,both\,\,side\,\,dividing\,\,by\,\,\sqrt 2 \cr
& or,\sin x\cos \dfrac{\pi }{4} + \cos x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} \cr
& or,\sin \left( {x + \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} \cr
& or,\sin \left( {x + \dfrac{\pi }{4}} \right) = \sin \dfrac{\pi }{4} \cr
& or,x + \dfrac{\pi }{4} = n\pi + {( - 1)^n}.\dfrac{\pi }{4};n \in {\Bbb Z} \cr
& or,x = n\pi + {( - 1)^n}.\dfrac{\pi }{4} - \dfrac{\pi }{4};n \in {\Bbb Z} \cr} $$
Hence,The most general values of x are here, $n\pi + {( - 1)^n}.\dfrac{\pi }{4} - \dfrac{\pi }{4};n \in {\Bbb Z}$
Therefore,option C) is correct.
Note:
Here we use the formula $\sin x = \sin \alpha \Rightarrow x = n\pi + {( - 1)^n}\alpha ;n \in {\Bbb Z},\,the\,\,set\,\,of\,\,all\,\,\operatorname{integers} $. These are general values of x for which $\sin x = \sin \alpha $. If we want to solve such types of equations, we have to find out general values or all values satisfying that trigonometric equation.
Recently Updated Pages
Geometry of Complex Numbers Explained

Circuit Switching vs Packet Switching: Key Differences Explained

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

JEE Mains Result 2026 – Session 1 and 2 Scorecard Download, Rank Details and Direct Link

JEE Mains 2026 Registration Live for Session 2 - Documents Needed, Mistakes to Avoid

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Other Pages
What is the Full Form of UGC? Detailed Guide for Students

Republic Day Speech 2026: Best Samples for Students

CUET 2026: Exam Dates, Syllabus, Application Form

Difference Between Exothermic and Endothermic Reactions Explained

Farewell Speech for Students: Express Your Appreciation and Inspire Success

What is the Full Form of AM and PM?

