Answer

Verified

53.1k+ views

Hint: To find out the resistivity of the semiconductor we need to find its conductivity first and then we can take its reciprocal to find out the required resistivity. While using the conductivity formula, we need to ignore the hole concentration as given in the question.

Formula used:

Conductivity of the semiconductor, $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and e is the charge on the electron.

We have been given the density of electrons, $n=10^{19}\; m^{-3}$ and mobility, ${\mu}_{e}=1.6\; m^2 /(V.s)$.

So, to find the conductivity we need to use the formula $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and $e=1.6 \times 10^{-19}$ C is the charge on the electron.

According to the question, the semiconductor is of n-type, so contribution of holes will be ignored.

So, conductivity $\sigma = n{\mu}_{e}e=10^{19}\times 1.6 \times 1.6 \times 10^{-19}\; (\Omega m)^{-1}=2.56\; (\Omega m)^{-1}$

Now, we know that resistivity, $\rho =\dfrac{1}{\sigma}$

Therefore. $\rho =\dfrac{1}{2.56}\; \Omega m=0.4\; \Omega m$

Hence, option b is the correct answer.

Note: There will be certain resistivity that will be provided by the holes too and we should take care until and unless it has been mentioned to ignore its effect, it effect should be considered by calculating the resistivity of the semiconductor.

Formula used:

Conductivity of the semiconductor, $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and e is the charge on the electron.

__Complete step by step answer:__We have been given the density of electrons, $n=10^{19}\; m^{-3}$ and mobility, ${\mu}_{e}=1.6\; m^2 /(V.s)$.

So, to find the conductivity we need to use the formula $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and $e=1.6 \times 10^{-19}$ C is the charge on the electron.

According to the question, the semiconductor is of n-type, so contribution of holes will be ignored.

So, conductivity $\sigma = n{\mu}_{e}e=10^{19}\times 1.6 \times 1.6 \times 10^{-19}\; (\Omega m)^{-1}=2.56\; (\Omega m)^{-1}$

Now, we know that resistivity, $\rho =\dfrac{1}{\sigma}$

Therefore. $\rho =\dfrac{1}{2.56}\; \Omega m=0.4\; \Omega m$

Hence, option b is the correct answer.

Note: There will be certain resistivity that will be provided by the holes too and we should take care until and unless it has been mentioned to ignore its effect, it effect should be considered by calculating the resistivity of the semiconductor.

Recently Updated Pages

Which is not the correct advantage of parallel combination class 10 physics JEE_Main

State two factors upon which the heat absorbed by a class 10 physics JEE_Main

What will be the halflife of a first order reaction class 12 chemistry JEE_Main

Which of the following amino acids is an essential class 12 chemistry JEE_Main

Which of the following is least basic A B C D class 12 chemistry JEE_Main

Out of the following hybrid orbitals the one which class 12 chemistry JEE_Main

Other Pages

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Vant Hoff factor when benzoic acid is dissolved in class 12 chemistry JEE_Main

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main