Answer

Verified

86.7k+ views

Hint: To find out the resistivity of the semiconductor we need to find its conductivity first and then we can take its reciprocal to find out the required resistivity. While using the conductivity formula, we need to ignore the hole concentration as given in the question.

Formula used:

Conductivity of the semiconductor, $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and e is the charge on the electron.

We have been given the density of electrons, $n=10^{19}\; m^{-3}$ and mobility, ${\mu}_{e}=1.6\; m^2 /(V.s)$.

So, to find the conductivity we need to use the formula $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and $e=1.6 \times 10^{-19}$ C is the charge on the electron.

According to the question, the semiconductor is of n-type, so contribution of holes will be ignored.

So, conductivity $\sigma = n{\mu}_{e}e=10^{19}\times 1.6 \times 1.6 \times 10^{-19}\; (\Omega m)^{-1}=2.56\; (\Omega m)^{-1}$

Now, we know that resistivity, $\rho =\dfrac{1}{\sigma}$

Therefore. $\rho =\dfrac{1}{2.56}\; \Omega m=0.4\; \Omega m$

Hence, option b is the correct answer.

Note: There will be certain resistivity that will be provided by the holes too and we should take care until and unless it has been mentioned to ignore its effect, it effect should be considered by calculating the resistivity of the semiconductor.

Formula used:

Conductivity of the semiconductor, $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and e is the charge on the electron.

__Complete step by step answer:__We have been given the density of electrons, $n=10^{19}\; m^{-3}$ and mobility, ${\mu}_{e}=1.6\; m^2 /(V.s)$.

So, to find the conductivity we need to use the formula $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and $e=1.6 \times 10^{-19}$ C is the charge on the electron.

According to the question, the semiconductor is of n-type, so contribution of holes will be ignored.

So, conductivity $\sigma = n{\mu}_{e}e=10^{19}\times 1.6 \times 1.6 \times 10^{-19}\; (\Omega m)^{-1}=2.56\; (\Omega m)^{-1}$

Now, we know that resistivity, $\rho =\dfrac{1}{\sigma}$

Therefore. $\rho =\dfrac{1}{2.56}\; \Omega m=0.4\; \Omega m$

Hence, option b is the correct answer.

Note: There will be certain resistivity that will be provided by the holes too and we should take care until and unless it has been mentioned to ignore its effect, it effect should be considered by calculating the resistivity of the semiconductor.

Recently Updated Pages

Name the scale on which the destructive energy of an class 11 physics JEE_Main

Write an article on the need and importance of sports class 10 english JEE_Main

Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main

Choose the one which best expresses the meaning of class 9 english JEE_Main

What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main

A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main

Other Pages

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

The thickness of the depletion layer is approximately class 11 physics JEE_Main