
The mobility of electrons in a semiconductor is defined as the ratio of their drift velocity to the applied electric field. If, for a n-type semiconductor, the density of electrons is $10^{19}\; m^{-3}$ and their mobility is $1.6\; m^2 /(V.s)$ then the resistivity of the semiconductor (since it is an n-type semiconductor contribution of holes is ignored) is close to:
a). $2\; \Omega m$
b). $0.4\; \Omega m$
c). $4\; \Omega m$
d). $0.2\; \Omega m$
Answer
232.8k+ views
Hint: To find out the resistivity of the semiconductor we need to find its conductivity first and then we can take its reciprocal to find out the required resistivity. While using the conductivity formula, we need to ignore the hole concentration as given in the question.
Formula used:
Conductivity of the semiconductor, $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and e is the charge on the electron.
Complete step by step answer:
We have been given the density of electrons, $n=10^{19}\; m^{-3}$ and mobility, ${\mu}_{e}=1.6\; m^2 /(V.s)$.
So, to find the conductivity we need to use the formula $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and $e=1.6 \times 10^{-19}$ C is the charge on the electron.
According to the question, the semiconductor is of n-type, so contribution of holes will be ignored.
So, conductivity $\sigma = n{\mu}_{e}e=10^{19}\times 1.6 \times 1.6 \times 10^{-19}\; (\Omega m)^{-1}=2.56\; (\Omega m)^{-1}$
Now, we know that resistivity, $\rho =\dfrac{1}{\sigma}$
Therefore. $\rho =\dfrac{1}{2.56}\; \Omega m=0.4\; \Omega m$
Hence, option b is the correct answer.
Note: There will be certain resistivity that will be provided by the holes too and we should take care until and unless it has been mentioned to ignore its effect, it effect should be considered by calculating the resistivity of the semiconductor.
Formula used:
Conductivity of the semiconductor, $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and e is the charge on the electron.
Complete step by step answer:
We have been given the density of electrons, $n=10^{19}\; m^{-3}$ and mobility, ${\mu}_{e}=1.6\; m^2 /(V.s)$.
So, to find the conductivity we need to use the formula $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and $e=1.6 \times 10^{-19}$ C is the charge on the electron.
According to the question, the semiconductor is of n-type, so contribution of holes will be ignored.
So, conductivity $\sigma = n{\mu}_{e}e=10^{19}\times 1.6 \times 1.6 \times 10^{-19}\; (\Omega m)^{-1}=2.56\; (\Omega m)^{-1}$
Now, we know that resistivity, $\rho =\dfrac{1}{\sigma}$
Therefore. $\rho =\dfrac{1}{2.56}\; \Omega m=0.4\; \Omega m$
Hence, option b is the correct answer.
Note: There will be certain resistivity that will be provided by the holes too and we should take care until and unless it has been mentioned to ignore its effect, it effect should be considered by calculating the resistivity of the semiconductor.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

