
The minimum velocity (in \[m{s^{ - 1}}\]) with which a car driver must traverse a flat curve of radius 150 m and coefficient of friction 0.6 to avoid skidding is
A. \[60\,m{s^{ - 1}}\]
B. \[30\,m{s^{ - 1}}\]
C. \[15\,m{s^{ - 1}}\]
D. \[25\,m{s^{ - 1}}\]
Answer
216k+ views
Hint:Before we start addressing the problem, we need to know about centripetal force. Whenever a body passes through the curve centripetal force acts on the body and the direction of the force is at the body and is always acting away towards the center of the curve. The centripetal force is necessary to act on the body as the curve arises to balance the forces on the body.
Formula Used:
To find the centripetal force the formula is,
\[F = \dfrac{{m{v^2}}}{r}\]
Where, m is the mass of the body, v is the speed of the body and r is radius.
Complete step by step solution:
Here, when a car driver is moving in a flat curve, he must possess a centripetal force. Centripetal force is not a fundamental force which means some other force behaves like centripetal force. Here, the static friction acts as centripetal force. The expression for the centripetal force is,
\[\dfrac{{m{v^2}}}{r} = F\]
\[\Rightarrow \dfrac{{m{v^2}}}{r} = \mu N\]
Here, the force is nothing but the frictional force i.e., \[\mu N\] and N is the normal force given by, \[N = mg\].
Then, the above equation becomes,
\[\dfrac{{m{v^2}}}{r} = \mu \left( {mg} \right)\]
\[\Rightarrow {v^2} = \mu rg\]
\[\Rightarrow v = \sqrt {\mu rg} \]
Substitute the value of \[\mu = 0.6\], \[r = 150\,m\] and \[g = 9.8\,m{s^{ - 2}}\]
\[v = \sqrt {0.6 \times 150 \times 9.8} \]
\[\Rightarrow v = 29.69\,m{s^{ - 1}}\]
\[\therefore v = 30\,m{s^{ - 1}}\]
Therefore, the minimum velocity with which a car driver must traverse a flat curve is \[30\,m{s^{ - 1}}\].
Hence, option B is the correct answer.
Note: In this problem it is important to remember that the equation for the centripetal force that is, \[F = \dfrac{{m{v^2}}}{r}\]. Here, the force is nothing but the frictional force between the car and the road.
Formula Used:
To find the centripetal force the formula is,
\[F = \dfrac{{m{v^2}}}{r}\]
Where, m is the mass of the body, v is the speed of the body and r is radius.
Complete step by step solution:
Here, when a car driver is moving in a flat curve, he must possess a centripetal force. Centripetal force is not a fundamental force which means some other force behaves like centripetal force. Here, the static friction acts as centripetal force. The expression for the centripetal force is,
\[\dfrac{{m{v^2}}}{r} = F\]
\[\Rightarrow \dfrac{{m{v^2}}}{r} = \mu N\]
Here, the force is nothing but the frictional force i.e., \[\mu N\] and N is the normal force given by, \[N = mg\].
Then, the above equation becomes,
\[\dfrac{{m{v^2}}}{r} = \mu \left( {mg} \right)\]
\[\Rightarrow {v^2} = \mu rg\]
\[\Rightarrow v = \sqrt {\mu rg} \]
Substitute the value of \[\mu = 0.6\], \[r = 150\,m\] and \[g = 9.8\,m{s^{ - 2}}\]
\[v = \sqrt {0.6 \times 150 \times 9.8} \]
\[\Rightarrow v = 29.69\,m{s^{ - 1}}\]
\[\therefore v = 30\,m{s^{ - 1}}\]
Therefore, the minimum velocity with which a car driver must traverse a flat curve is \[30\,m{s^{ - 1}}\].
Hence, option B is the correct answer.
Note: In this problem it is important to remember that the equation for the centripetal force that is, \[F = \dfrac{{m{v^2}}}{r}\]. Here, the force is nothing but the frictional force between the car and the road.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

