
The M.I. of a thin rod of length L about the perpendicular axis through its centre is I. The M.I. of the square structure made by four such rods about a perpendicular axis to the plane and through the centre will be:
\[
A.\;\;\;\;\;4I \\
B.\;\;\;\;\;8I \\
C.\;\;\;\;\;12I \\
D.\;\;\;\;\;16I \\
\]
Answer
233.1k+ views
Hint: The moment of inertia (M.I.) of a rectangular rod is given by
$I = \dfrac{1}{{12}}m{L^2}$
Where, I = Moment of inertia of the rod.
m = Mass of the rod.
L = Length of the rod.
Next use the parallel axis theorem to get the required result.
Complete step by step solution:
We know, the moment of inertia (M.I.) of a rectangular rod is given by
$I = \dfrac{1}{{12}}m{L^2}$……(i)
Where, I = Moment of inertia of the rod.
m = Mass of the rod.
L = Length of the rod.
From equation (i) we get
$12I = m{L^2}$……(ii)
Additional Information: Parallel axis theorem states that M.I. of any body about any axis is equal to the sum of the M.I. of the body about a axis parallel passing through the centre of gravity and the product of the mass of the body and square of the distance between the two axis.
Now, using parallel axis theorem, we get
$I = {I_{CM}} + m{h^2}$
Where, $I_{CM}$ = Moment of inertia about the centre of mass of the body.
h = Distance between the two axes.
$\therefore $ Net moment of inertia = $4\left( {\dfrac{1}{{12}}m{L^2} + m\left( {\dfrac{L}{2}} \right)} \right)$
The RHS of the above equation is multiplied by 4 as there are 4 rods given in the question.
Putting the value of $mL^2$ from equation (ii) in above equation we get
Or, Net M.I. = $4\times\left( {\dfrac{{12I}}{{12}} + \dfrac{{12I}}{4}} \right)$
Or, Net M.I. = $16I$.
Therefore, the required answer is 16I (Option D)
Note: Try and remember all the formulas of moment of inertia of different bodies and both the theorems i.e. perpendicular axis theorem and parallel axis theorem. Equation (i) represents the expression for moment of inertia of rectangular lamina.
$I = \dfrac{1}{{12}}m{L^2}$
Where, I = Moment of inertia of the rod.
m = Mass of the rod.
L = Length of the rod.
Next use the parallel axis theorem to get the required result.
Complete step by step solution:
We know, the moment of inertia (M.I.) of a rectangular rod is given by
$I = \dfrac{1}{{12}}m{L^2}$……(i)
Where, I = Moment of inertia of the rod.
m = Mass of the rod.
L = Length of the rod.
From equation (i) we get
$12I = m{L^2}$……(ii)
Additional Information: Parallel axis theorem states that M.I. of any body about any axis is equal to the sum of the M.I. of the body about a axis parallel passing through the centre of gravity and the product of the mass of the body and square of the distance between the two axis.
Now, using parallel axis theorem, we get
$I = {I_{CM}} + m{h^2}$
Where, $I_{CM}$ = Moment of inertia about the centre of mass of the body.
h = Distance between the two axes.
$\therefore $ Net moment of inertia = $4\left( {\dfrac{1}{{12}}m{L^2} + m\left( {\dfrac{L}{2}} \right)} \right)$
The RHS of the above equation is multiplied by 4 as there are 4 rods given in the question.
Putting the value of $mL^2$ from equation (ii) in above equation we get
Or, Net M.I. = $4\times\left( {\dfrac{{12I}}{{12}} + \dfrac{{12I}}{4}} \right)$
Or, Net M.I. = $16I$.
Therefore, the required answer is 16I (Option D)
Note: Try and remember all the formulas of moment of inertia of different bodies and both the theorems i.e. perpendicular axis theorem and parallel axis theorem. Equation (i) represents the expression for moment of inertia of rectangular lamina.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

