
The M.I. of a thin rod of length L about the perpendicular axis through its centre is I. The M.I. of the square structure made by four such rods about a perpendicular axis to the plane and through the centre will be:
\[
A.\;\;\;\;\;4I \\
B.\;\;\;\;\;8I \\
C.\;\;\;\;\;12I \\
D.\;\;\;\;\;16I \\
\]
Answer
219.9k+ views
Hint: The moment of inertia (M.I.) of a rectangular rod is given by
$I = \dfrac{1}{{12}}m{L^2}$
Where, I = Moment of inertia of the rod.
m = Mass of the rod.
L = Length of the rod.
Next use the parallel axis theorem to get the required result.
Complete step by step solution:
We know, the moment of inertia (M.I.) of a rectangular rod is given by
$I = \dfrac{1}{{12}}m{L^2}$……(i)
Where, I = Moment of inertia of the rod.
m = Mass of the rod.
L = Length of the rod.
From equation (i) we get
$12I = m{L^2}$……(ii)
Additional Information: Parallel axis theorem states that M.I. of any body about any axis is equal to the sum of the M.I. of the body about a axis parallel passing through the centre of gravity and the product of the mass of the body and square of the distance between the two axis.
Now, using parallel axis theorem, we get
$I = {I_{CM}} + m{h^2}$
Where, $I_{CM}$ = Moment of inertia about the centre of mass of the body.
h = Distance between the two axes.
$\therefore $ Net moment of inertia = $4\left( {\dfrac{1}{{12}}m{L^2} + m\left( {\dfrac{L}{2}} \right)} \right)$
The RHS of the above equation is multiplied by 4 as there are 4 rods given in the question.
Putting the value of $mL^2$ from equation (ii) in above equation we get
Or, Net M.I. = $4\times\left( {\dfrac{{12I}}{{12}} + \dfrac{{12I}}{4}} \right)$
Or, Net M.I. = $16I$.
Therefore, the required answer is 16I (Option D)
Note: Try and remember all the formulas of moment of inertia of different bodies and both the theorems i.e. perpendicular axis theorem and parallel axis theorem. Equation (i) represents the expression for moment of inertia of rectangular lamina.
$I = \dfrac{1}{{12}}m{L^2}$
Where, I = Moment of inertia of the rod.
m = Mass of the rod.
L = Length of the rod.
Next use the parallel axis theorem to get the required result.
Complete step by step solution:
We know, the moment of inertia (M.I.) of a rectangular rod is given by
$I = \dfrac{1}{{12}}m{L^2}$……(i)
Where, I = Moment of inertia of the rod.
m = Mass of the rod.
L = Length of the rod.
From equation (i) we get
$12I = m{L^2}$……(ii)
Additional Information: Parallel axis theorem states that M.I. of any body about any axis is equal to the sum of the M.I. of the body about a axis parallel passing through the centre of gravity and the product of the mass of the body and square of the distance between the two axis.
Now, using parallel axis theorem, we get
$I = {I_{CM}} + m{h^2}$
Where, $I_{CM}$ = Moment of inertia about the centre of mass of the body.
h = Distance between the two axes.
$\therefore $ Net moment of inertia = $4\left( {\dfrac{1}{{12}}m{L^2} + m\left( {\dfrac{L}{2}} \right)} \right)$
The RHS of the above equation is multiplied by 4 as there are 4 rods given in the question.
Putting the value of $mL^2$ from equation (ii) in above equation we get
Or, Net M.I. = $4\times\left( {\dfrac{{12I}}{{12}} + \dfrac{{12I}}{4}} \right)$
Or, Net M.I. = $16I$.
Therefore, the required answer is 16I (Option D)
Note: Try and remember all the formulas of moment of inertia of different bodies and both the theorems i.e. perpendicular axis theorem and parallel axis theorem. Equation (i) represents the expression for moment of inertia of rectangular lamina.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

