
The magnetic field in a coil of 100 turns and 40 square cm area is increased from 1 Tesla to 6 Tesla in 2 seconds. The magnetic field is perpendicular to the coil. The e.m.f. generated in it is:
A) $104 V$
B) $1.2 V$
C) $1.0 V$
D) $10^{-2}V$
Answer
220.8k+ views
Hint: Faraday’s discovery in 1831 of the phenomenon of magnetic induction is one of the great milestones in the quest toward understanding and exploiting nature. Faraday found that a changing magnetic field in a circuit induces an electro-motive force in the circuit. Secondly, the magnitude of the electromotive force equals the rate at which the flux of the magnetic field through the circuit changes. The flux is a measure of how much field penetrates through the circuit. The electromotive force is measured in volts and is represented by the equation:
\[e = - \dfrac{{d\phi }}{{dt}}\]
Here, $\phi$ the flux of the vector field B through the circuit, measures how much of the field passes through the circuit. The rate of change of this flux is the induced electromotive force. The units of magnetic flux are Weber. The minus sign indicates the direction of the induced electromotive force and hence of any induced current.
Complete step by step solution:
The number of turns of the coil (N) = 100.
Area of the cross-section of the coil (A) = 40 cm2.
Initial magnetic flux of the coil (\[{\phi _1}\]) = 1 Tesla.
Final magnetic flux of the coil (\[{\phi _2}\]) = 6 Tesla.
Change in the magnetic flux of the coil (\[{\phi _2} - {\phi _1}\]) = 6 – 1= 5 Tesla.
The time required to change in the magnetic flux (t) = 2 s.
Now by applying Faraday Second Law of the Electromagnetic Induction, we get
$
\Rightarrow e = - N\dfrac{{d\phi }}{{dt}} \\
\Rightarrow \phi = \overrightarrow B .\overrightarrow A = BA{{ }}\cos \theta$
Since the magnetic field $(\overrightarrow B )$ and $(\overrightarrow A )$ are parallel to each other, the angle between them is zero.
$ \\
\Rightarrow \phi = \overrightarrow B .\overrightarrow A = BA{{ }}\cos 0^\circ \\
\Rightarrow e = - N\dfrac{{dBA{{ }}\cos 0^\circ }}{{dt}} \\
\Rightarrow e = - NA{{ }}\cos 0^\circ \dfrac{{dB}}{{dt}} \\
\Rightarrow e = - NA{{ }}\cos 0^\circ \dfrac{{d({\phi _2} - {\phi _1})}}{{dt}} \\
\Rightarrow e = - 100 \times {{ }}\cos 0^\circ \times \dfrac{{40 \times {{10}^{ - 4}}}}{2} \\
\Rightarrow e = - 100 \times {{ }}1 \times \dfrac{{40 \times {{10}^{ - 4}}}}{2} \\
\Rightarrow e = - 100 \times {{ }}1 \times 20 \times {10^{ - 4}} \times (6 - 1) \\
\Rightarrow e = - 100 \times {{ }}1 \times 20 \times {10^{ - 4}} \times 5 \\
\Rightarrow e = - 100 \times {{ }}1 \times 100 \times {10^{ - 4}} \\
\Rightarrow e = - 1{{ }}V \\
\Rightarrow \left| e \right| = 1{{ }}V. \\
$
The electromotive force generated in the coil is 1 V.
Therefore, option(C) is correct.
Note: Faraday found that a changing magnetic field in a circuit induces an electro-motive force in the circuit. Secondly, the magnitude of the electromotive force equals the rate at which the flux of the magnetic field through the circuit changes. The flux is a measure of how much field penetrates through the circuit. The electromotive force is measured in volts and is represented by the equation:
$
e = - N\dfrac{{d\phi }}{{dt}} \\
\Rightarrow e = - NA\dfrac{{dB}}{{dt}}\cos \theta . \\
$
\[e = - \dfrac{{d\phi }}{{dt}}\]
Here, $\phi$ the flux of the vector field B through the circuit, measures how much of the field passes through the circuit. The rate of change of this flux is the induced electromotive force. The units of magnetic flux are Weber. The minus sign indicates the direction of the induced electromotive force and hence of any induced current.
Complete step by step solution:
The number of turns of the coil (N) = 100.
Area of the cross-section of the coil (A) = 40 cm2.
Initial magnetic flux of the coil (\[{\phi _1}\]) = 1 Tesla.
Final magnetic flux of the coil (\[{\phi _2}\]) = 6 Tesla.
Change in the magnetic flux of the coil (\[{\phi _2} - {\phi _1}\]) = 6 – 1= 5 Tesla.
The time required to change in the magnetic flux (t) = 2 s.
Now by applying Faraday Second Law of the Electromagnetic Induction, we get
$
\Rightarrow e = - N\dfrac{{d\phi }}{{dt}} \\
\Rightarrow \phi = \overrightarrow B .\overrightarrow A = BA{{ }}\cos \theta$
Since the magnetic field $(\overrightarrow B )$ and $(\overrightarrow A )$ are parallel to each other, the angle between them is zero.
$ \\
\Rightarrow \phi = \overrightarrow B .\overrightarrow A = BA{{ }}\cos 0^\circ \\
\Rightarrow e = - N\dfrac{{dBA{{ }}\cos 0^\circ }}{{dt}} \\
\Rightarrow e = - NA{{ }}\cos 0^\circ \dfrac{{dB}}{{dt}} \\
\Rightarrow e = - NA{{ }}\cos 0^\circ \dfrac{{d({\phi _2} - {\phi _1})}}{{dt}} \\
\Rightarrow e = - 100 \times {{ }}\cos 0^\circ \times \dfrac{{40 \times {{10}^{ - 4}}}}{2} \\
\Rightarrow e = - 100 \times {{ }}1 \times \dfrac{{40 \times {{10}^{ - 4}}}}{2} \\
\Rightarrow e = - 100 \times {{ }}1 \times 20 \times {10^{ - 4}} \times (6 - 1) \\
\Rightarrow e = - 100 \times {{ }}1 \times 20 \times {10^{ - 4}} \times 5 \\
\Rightarrow e = - 100 \times {{ }}1 \times 100 \times {10^{ - 4}} \\
\Rightarrow e = - 1{{ }}V \\
\Rightarrow \left| e \right| = 1{{ }}V. \\
$
The electromotive force generated in the coil is 1 V.
Therefore, option(C) is correct.
Note: Faraday found that a changing magnetic field in a circuit induces an electro-motive force in the circuit. Secondly, the magnitude of the electromotive force equals the rate at which the flux of the magnetic field through the circuit changes. The flux is a measure of how much field penetrates through the circuit. The electromotive force is measured in volts and is represented by the equation:
$
e = - N\dfrac{{d\phi }}{{dt}} \\
\Rightarrow e = - NA\dfrac{{dB}}{{dt}}\cos \theta . \\
$
Recently Updated Pages
Young’s Double Slit Experiment Derivation Explained

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Atomic Structure for Beginners

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

Understanding the Wheatstone Bridge: Principles, Formula, and Applications

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Other Pages
What Are Elastic Collisions in One Dimension?

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Understanding Charging and Discharging of Capacitors

Free Radical Substitution and Its Stepwise Mechanism

MOSFET: Definition, Working Principle, Types & Applications

Understanding Geostationary and Geosynchronous Satellites

