
The magnetic field due to a current carrying circular loop of radius $3m$ at a point on the axis at a distance of $4m$ from the centre is $54\mu T$ .What will be its value at the centre of the loop?
A. $250\mu T$
B. $150\mu T$
C. $125\mu T$
D. $75\mu T$
Answer
218.7k+ views
Hint: Relate the given value of magnetic field at the centre of the loop with the formulae for both the cases.
The magnetic field on the axis of a current carrying loop is given by ${B_z} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2\pi {R^2}I}}{{{{\left( {{z^2} + {R^2}} \right)}^{3/2}}}}$ where $z$ is the distance of that point on the axis from centre of the loop, $R$ is the radius of the loop and $I$ is the current flowing in the loop. For the magnetic field at the centre of the loop, put $z = 0$ in the above expression.
Complete step by step answer:
In the question we are supposed to deal with the magnetic field due to the same circular loop at two different points on the axis and at the centre. Magnetic field on the axis is given ${B_z} = 54\mu T$ .
So we can relate the given value of the magnetic field at the centre of the loop with the formulae for both the cases.
We know that the magnetic field on the axis of a current carrying loop is given by ${B_z} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2\pi {R^2}I}}{{{{\left( {{z^2} + {R^2}} \right)}^{3/2}}}}$ where $z$ is the distance of that point on the axis from centre of the loop, $R$ is the radius of the loop and $I$ is the current flowing in the loop.
So, let us suppose that current $I$ is flowing in the loop.
Now, for magnetic field at the centre of the loop, we can put $z = 0$ in the above expression which gives
$\implies$ ${B_c} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2\pi I}}{R}$
On dividing both the equation we have
$\implies$ $\dfrac{{{B_c}}}{{{B_z}}} = \dfrac{{{{\left( {{z^2} + {R^2}} \right)}^{3/2}}}}{{{R^3}}}$
Therefore, substituting the values given in the question we have
$\implies$ $\dfrac{{{B_c}}}{{{B_z}}} = \dfrac{{{{\left( {{4^2} + {3^2}} \right)}^{3/2}}}}{{{3^3}}} = \dfrac{{125}}{{27}}$
So, we get the magnetic field at the centre as
$\implies$ ${B_c} = \dfrac{{125}}{{27}} \times {B_z} = \dfrac{{125}}{{27}} \times 54 = 250\mu T$
Hence, option A is correct.
Note: The two formulae which are used here can be derived using Biot-Savart’s Law. The direction of the magnetic field due to the loop can be determined using the right hand thumb rule which states that when we roll our fingers according to the direction of current flowing then the direction of thumb gives us the direction of the magnetic field due to the loop.
The magnetic field on the axis of a current carrying loop is given by ${B_z} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2\pi {R^2}I}}{{{{\left( {{z^2} + {R^2}} \right)}^{3/2}}}}$ where $z$ is the distance of that point on the axis from centre of the loop, $R$ is the radius of the loop and $I$ is the current flowing in the loop. For the magnetic field at the centre of the loop, put $z = 0$ in the above expression.
Complete step by step answer:
In the question we are supposed to deal with the magnetic field due to the same circular loop at two different points on the axis and at the centre. Magnetic field on the axis is given ${B_z} = 54\mu T$ .
So we can relate the given value of the magnetic field at the centre of the loop with the formulae for both the cases.
We know that the magnetic field on the axis of a current carrying loop is given by ${B_z} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2\pi {R^2}I}}{{{{\left( {{z^2} + {R^2}} \right)}^{3/2}}}}$ where $z$ is the distance of that point on the axis from centre of the loop, $R$ is the radius of the loop and $I$ is the current flowing in the loop.
So, let us suppose that current $I$ is flowing in the loop.
Now, for magnetic field at the centre of the loop, we can put $z = 0$ in the above expression which gives
$\implies$ ${B_c} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2\pi I}}{R}$
On dividing both the equation we have
$\implies$ $\dfrac{{{B_c}}}{{{B_z}}} = \dfrac{{{{\left( {{z^2} + {R^2}} \right)}^{3/2}}}}{{{R^3}}}$
Therefore, substituting the values given in the question we have
$\implies$ $\dfrac{{{B_c}}}{{{B_z}}} = \dfrac{{{{\left( {{4^2} + {3^2}} \right)}^{3/2}}}}{{{3^3}}} = \dfrac{{125}}{{27}}$
So, we get the magnetic field at the centre as
$\implies$ ${B_c} = \dfrac{{125}}{{27}} \times {B_z} = \dfrac{{125}}{{27}} \times 54 = 250\mu T$
Hence, option A is correct.
Note: The two formulae which are used here can be derived using Biot-Savart’s Law. The direction of the magnetic field due to the loop can be determined using the right hand thumb rule which states that when we roll our fingers according to the direction of current flowing then the direction of thumb gives us the direction of the magnetic field due to the loop.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

