
The local maximum of \[{\text{y = }}{{\text{x}}^3} - 3{{\text{x}}^2} + 5\] is attained at
(a) ${\text{x = 0}}$ (C) ${\text{x = 1}}$
(b) ${\text{x = 2}}$ (D) ${\text{x = - 1}}$
Answer
163.2k+ views
Hint:Local maxima can be found by differentiating the given expression with respect to variable x. The Points where 1st order differential becomes zero are known as critical points. And the value of the function at that point will be either maxima or minima.
Here, given cubic curve
\[ \Rightarrow {\text{y = }}{{\text{x}}^3} - 3{{\text{x}}^2} + 5\]
On differentiating above equation
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{x^3} - 3{x^2} + 5} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{x^3}} \right) - 3\dfrac{d}{{dx}}\left( {{x^2}} \right) + \dfrac{d}{{dx}}\left( 5 \right)$
Differentiation of constant term is zero
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {3{x^2}} \right) - \left( {6x} \right) + \left( 0 \right)$
Now making 1st order differential equal to zero
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {3{x^2}} \right) - \left( {6x} \right) + \left( 0 \right) \Rightarrow 0$
$ \Rightarrow 3{x^2} - 6x = 0 \Rightarrow 3x\left( {x - 2} \right) = 0$
$ \Rightarrow x = 0,2$
There are two critical points 0 and 2. So to decide which one will be maxima or minima, find 2nd order differential of y
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {3{x^2} - 6x} \right)$
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6x - 6 \Rightarrow 6(x - 1){\text{ (1)}}\]
We know that, by putting the values of critical points in the 2nd order differential.
\[{\text{if }}\dfrac{{{d^2}y}}{{d{x^2}}}\] is negative at $x = {x_1}$ then. ${x_1}$ Will be maxima
\[{\text{if }}\dfrac{{{d^2}y}}{{d{x^2}}}\] is positive at $x = {x_2}$ then. ${x_2}$ Will be minima
So using above result, on putting x = 0, in equation (1)
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6x - 6 \Rightarrow 6(0 - 1){\text{ }}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {\text{ - }}6 < 0{\text{ }}\]
So, here 2nd order differential comes negative which means at x= 0 will be local maxima
And on putting x=2,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6x - 6 \Rightarrow 6(2 - 1){\text{ }}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {\text{ }}6 > 0{\text{ }}\]
So, here 2nd order differential comes positive which means at x= 2 will be local minima
In question it was asked about maxima so option (a) is correct.
Note:-
In these types of questions, find the critical points and check the sign of the 2nd order derivative whether it is positive or negative.
Note : Alternative Method
We know that, where $\dfrac{{dy}}{{dx}}$ equals zero at a certain point, it means the slope of the tangent at that point is zero. So by finding the sign of $\dfrac{{dy}}{{dx}}$in the neighbourhood of that point, then we can comment on maxima or minima. If the sign of $\dfrac{{dy}}{{dx}}$changes from positive to negative, then at that point it will be maxima otherwise Minima.

So here at 0 it will be maxima.
Here, given cubic curve
\[ \Rightarrow {\text{y = }}{{\text{x}}^3} - 3{{\text{x}}^2} + 5\]
On differentiating above equation
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{x^3} - 3{x^2} + 5} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{x^3}} \right) - 3\dfrac{d}{{dx}}\left( {{x^2}} \right) + \dfrac{d}{{dx}}\left( 5 \right)$
Differentiation of constant term is zero
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {3{x^2}} \right) - \left( {6x} \right) + \left( 0 \right)$
Now making 1st order differential equal to zero
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {3{x^2}} \right) - \left( {6x} \right) + \left( 0 \right) \Rightarrow 0$
$ \Rightarrow 3{x^2} - 6x = 0 \Rightarrow 3x\left( {x - 2} \right) = 0$
$ \Rightarrow x = 0,2$
There are two critical points 0 and 2. So to decide which one will be maxima or minima, find 2nd order differential of y
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {3{x^2} - 6x} \right)$
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6x - 6 \Rightarrow 6(x - 1){\text{ (1)}}\]
We know that, by putting the values of critical points in the 2nd order differential.
\[{\text{if }}\dfrac{{{d^2}y}}{{d{x^2}}}\] is negative at $x = {x_1}$ then. ${x_1}$ Will be maxima
\[{\text{if }}\dfrac{{{d^2}y}}{{d{x^2}}}\] is positive at $x = {x_2}$ then. ${x_2}$ Will be minima
So using above result, on putting x = 0, in equation (1)
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6x - 6 \Rightarrow 6(0 - 1){\text{ }}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {\text{ - }}6 < 0{\text{ }}\]
So, here 2nd order differential comes negative which means at x= 0 will be local maxima
And on putting x=2,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6x - 6 \Rightarrow 6(2 - 1){\text{ }}\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {\text{ }}6 > 0{\text{ }}\]
So, here 2nd order differential comes positive which means at x= 2 will be local minima
In question it was asked about maxima so option (a) is correct.
Note:-
In these types of questions, find the critical points and check the sign of the 2nd order derivative whether it is positive or negative.
Note : Alternative Method
We know that, where $\dfrac{{dy}}{{dx}}$ equals zero at a certain point, it means the slope of the tangent at that point is zero. So by finding the sign of $\dfrac{{dy}}{{dx}}$in the neighbourhood of that point, then we can comment on maxima or minima. If the sign of $\dfrac{{dy}}{{dx}}$changes from positive to negative, then at that point it will be maxima otherwise Minima.

So here at 0 it will be maxima.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
