
The inverse of the matrix $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$ is
A. $\left[ {\begin{array}{*{20}{l}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]$
В. $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{l}}0&1&0\\0&0&1\\1&0&0\end{array}} \right]$
D. $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&0&1\end{array}} \right]$
Answer
163.2k+ views
Hint: Using the knowledge that multiplying a matrix by its inverse yields the identity matrix, we begin the problem-solving process. We write in the matrices in the specified order using the identity matrix definition. In our case, we are given an identity matrix. First we have to find the adjacent matrix and then we have to find the transpose of the adjacent matrix to get the desired answer.
Formula Used: ${A^{ - 1}} = \dfrac{{adj(A)}}{{|A|}};|A| \ne 0$
Complete step by step solution: We are provided the matrix in the question that
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
And we are asked to determine the inverse of the given matrix
Now, we have to determine the cofactors of the given matrix, we have
${C_{11}} = {( - 1)^{1 + 1}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
${C_{12}} = {( - 1)^{1/2}}\left| {\begin{array}{*{20}{l}}0&0\\0&1\end{array}} \right| = 0$
${C_{13}} = {( - 1)^{1/3}}\left| {\begin{array}{*{20}{l}}0&1\\0&0\end{array}} \right| = 0$
$4{C_{21}} = {( - 1)^{2 + 1}}\left| {\begin{array}{*{20}{l}}0&0\\0&1\end{array}} \right| = 04$
${C_{22}} = {( - 1)^{2 + 2}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
${C_{23}} = {( - 1)^{2 + 3}}\left| {\begin{array}{*{20}{l}}1&0\\0&0\end{array}} \right| = 0$
${C_{31}} = {( - 1)^{3 + 1}}\left| {\begin{array}{*{20}{l}}0&0\\1&0\end{array}} \right| = 0$
${C_{32}} = {( - 1)^{3 + 2}}\left| {\begin{array}{*{20}{l}}1&0\\0&0\end{array}} \right| = 0$
${C_{33}} = {( - 1)^{3 + 3}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
Now, we have to determine the transpose of the cofactor matrix, we get
Here, columns change into rows, and rows change into columns.
Therefore, the transpose matrix is
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Now, we have to add the identity matrix to it and run row operations to try to move the identity matrix to the left in order to discover the inverse matrix. The inverse matrix will then appear to the right.
But an identity matrix is already present in the matrix to the left. Thus, the inverse matrix also qualifies as an identity matrix.
So, on turning the left matrix to right matrix we get
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Therefore, the inverse of the matrix $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$ is $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Option ‘B’ is correct
Note: Although it is a challenging task, it is possible to estimate the inverse of a 3 by 3 matrix by doing certain procedures. Even though it could appear challenging, the best way to get beyond it is to repeatedly use a sample problem to solve the question. So, student should follow the correct concept to determine the desired solution.
Formula Used: ${A^{ - 1}} = \dfrac{{adj(A)}}{{|A|}};|A| \ne 0$
Complete step by step solution: We are provided the matrix in the question that
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
And we are asked to determine the inverse of the given matrix
Now, we have to determine the cofactors of the given matrix, we have
${C_{11}} = {( - 1)^{1 + 1}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
${C_{12}} = {( - 1)^{1/2}}\left| {\begin{array}{*{20}{l}}0&0\\0&1\end{array}} \right| = 0$
${C_{13}} = {( - 1)^{1/3}}\left| {\begin{array}{*{20}{l}}0&1\\0&0\end{array}} \right| = 0$
$4{C_{21}} = {( - 1)^{2 + 1}}\left| {\begin{array}{*{20}{l}}0&0\\0&1\end{array}} \right| = 04$
${C_{22}} = {( - 1)^{2 + 2}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
${C_{23}} = {( - 1)^{2 + 3}}\left| {\begin{array}{*{20}{l}}1&0\\0&0\end{array}} \right| = 0$
${C_{31}} = {( - 1)^{3 + 1}}\left| {\begin{array}{*{20}{l}}0&0\\1&0\end{array}} \right| = 0$
${C_{32}} = {( - 1)^{3 + 2}}\left| {\begin{array}{*{20}{l}}1&0\\0&0\end{array}} \right| = 0$
${C_{33}} = {( - 1)^{3 + 3}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
Now, we have to determine the transpose of the cofactor matrix, we get
Here, columns change into rows, and rows change into columns.
Therefore, the transpose matrix is
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Now, we have to add the identity matrix to it and run row operations to try to move the identity matrix to the left in order to discover the inverse matrix. The inverse matrix will then appear to the right.
But an identity matrix is already present in the matrix to the left. Thus, the inverse matrix also qualifies as an identity matrix.
So, on turning the left matrix to right matrix we get
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Therefore, the inverse of the matrix $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$ is $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Option ‘B’ is correct
Note: Although it is a challenging task, it is possible to estimate the inverse of a 3 by 3 matrix by doing certain procedures. Even though it could appear challenging, the best way to get beyond it is to repeatedly use a sample problem to solve the question. So, student should follow the correct concept to determine the desired solution.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
