
The inverse of the matrix $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$ is
A. $\left[ {\begin{array}{*{20}{l}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]$
В. $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{l}}0&1&0\\0&0&1\\1&0&0\end{array}} \right]$
D. $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&0&1\end{array}} \right]$
Answer
218.1k+ views
Hint: Using the knowledge that multiplying a matrix by its inverse yields the identity matrix, we begin the problem-solving process. We write in the matrices in the specified order using the identity matrix definition. In our case, we are given an identity matrix. First we have to find the adjacent matrix and then we have to find the transpose of the adjacent matrix to get the desired answer.
Formula Used: ${A^{ - 1}} = \dfrac{{adj(A)}}{{|A|}};|A| \ne 0$
Complete step by step solution: We are provided the matrix in the question that
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
And we are asked to determine the inverse of the given matrix
Now, we have to determine the cofactors of the given matrix, we have
${C_{11}} = {( - 1)^{1 + 1}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
${C_{12}} = {( - 1)^{1/2}}\left| {\begin{array}{*{20}{l}}0&0\\0&1\end{array}} \right| = 0$
${C_{13}} = {( - 1)^{1/3}}\left| {\begin{array}{*{20}{l}}0&1\\0&0\end{array}} \right| = 0$
$4{C_{21}} = {( - 1)^{2 + 1}}\left| {\begin{array}{*{20}{l}}0&0\\0&1\end{array}} \right| = 04$
${C_{22}} = {( - 1)^{2 + 2}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
${C_{23}} = {( - 1)^{2 + 3}}\left| {\begin{array}{*{20}{l}}1&0\\0&0\end{array}} \right| = 0$
${C_{31}} = {( - 1)^{3 + 1}}\left| {\begin{array}{*{20}{l}}0&0\\1&0\end{array}} \right| = 0$
${C_{32}} = {( - 1)^{3 + 2}}\left| {\begin{array}{*{20}{l}}1&0\\0&0\end{array}} \right| = 0$
${C_{33}} = {( - 1)^{3 + 3}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
Now, we have to determine the transpose of the cofactor matrix, we get
Here, columns change into rows, and rows change into columns.
Therefore, the transpose matrix is
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Now, we have to add the identity matrix to it and run row operations to try to move the identity matrix to the left in order to discover the inverse matrix. The inverse matrix will then appear to the right.
But an identity matrix is already present in the matrix to the left. Thus, the inverse matrix also qualifies as an identity matrix.
So, on turning the left matrix to right matrix we get
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Therefore, the inverse of the matrix $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$ is $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Option ‘B’ is correct
Note: Although it is a challenging task, it is possible to estimate the inverse of a 3 by 3 matrix by doing certain procedures. Even though it could appear challenging, the best way to get beyond it is to repeatedly use a sample problem to solve the question. So, student should follow the correct concept to determine the desired solution.
Formula Used: ${A^{ - 1}} = \dfrac{{adj(A)}}{{|A|}};|A| \ne 0$
Complete step by step solution: We are provided the matrix in the question that
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
And we are asked to determine the inverse of the given matrix
Now, we have to determine the cofactors of the given matrix, we have
${C_{11}} = {( - 1)^{1 + 1}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
${C_{12}} = {( - 1)^{1/2}}\left| {\begin{array}{*{20}{l}}0&0\\0&1\end{array}} \right| = 0$
${C_{13}} = {( - 1)^{1/3}}\left| {\begin{array}{*{20}{l}}0&1\\0&0\end{array}} \right| = 0$
$4{C_{21}} = {( - 1)^{2 + 1}}\left| {\begin{array}{*{20}{l}}0&0\\0&1\end{array}} \right| = 04$
${C_{22}} = {( - 1)^{2 + 2}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
${C_{23}} = {( - 1)^{2 + 3}}\left| {\begin{array}{*{20}{l}}1&0\\0&0\end{array}} \right| = 0$
${C_{31}} = {( - 1)^{3 + 1}}\left| {\begin{array}{*{20}{l}}0&0\\1&0\end{array}} \right| = 0$
${C_{32}} = {( - 1)^{3 + 2}}\left| {\begin{array}{*{20}{l}}1&0\\0&0\end{array}} \right| = 0$
${C_{33}} = {( - 1)^{3 + 3}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
Now, we have to determine the transpose of the cofactor matrix, we get
Here, columns change into rows, and rows change into columns.
Therefore, the transpose matrix is
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Now, we have to add the identity matrix to it and run row operations to try to move the identity matrix to the left in order to discover the inverse matrix. The inverse matrix will then appear to the right.
But an identity matrix is already present in the matrix to the left. Thus, the inverse matrix also qualifies as an identity matrix.
So, on turning the left matrix to right matrix we get
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Therefore, the inverse of the matrix $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$ is $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Option ‘B’ is correct
Note: Although it is a challenging task, it is possible to estimate the inverse of a 3 by 3 matrix by doing certain procedures. Even though it could appear challenging, the best way to get beyond it is to repeatedly use a sample problem to solve the question. So, student should follow the correct concept to determine the desired solution.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

