
The inverse of the matrix $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$ is
A. $\left[ {\begin{array}{*{20}{l}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]$
В. $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{l}}0&1&0\\0&0&1\\1&0&0\end{array}} \right]$
D. $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&0&1\end{array}} \right]$
Answer
161.1k+ views
Hint: Using the knowledge that multiplying a matrix by its inverse yields the identity matrix, we begin the problem-solving process. We write in the matrices in the specified order using the identity matrix definition. In our case, we are given an identity matrix. First we have to find the adjacent matrix and then we have to find the transpose of the adjacent matrix to get the desired answer.
Formula Used: ${A^{ - 1}} = \dfrac{{adj(A)}}{{|A|}};|A| \ne 0$
Complete step by step solution: We are provided the matrix in the question that
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
And we are asked to determine the inverse of the given matrix
Now, we have to determine the cofactors of the given matrix, we have
${C_{11}} = {( - 1)^{1 + 1}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
${C_{12}} = {( - 1)^{1/2}}\left| {\begin{array}{*{20}{l}}0&0\\0&1\end{array}} \right| = 0$
${C_{13}} = {( - 1)^{1/3}}\left| {\begin{array}{*{20}{l}}0&1\\0&0\end{array}} \right| = 0$
$4{C_{21}} = {( - 1)^{2 + 1}}\left| {\begin{array}{*{20}{l}}0&0\\0&1\end{array}} \right| = 04$
${C_{22}} = {( - 1)^{2 + 2}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
${C_{23}} = {( - 1)^{2 + 3}}\left| {\begin{array}{*{20}{l}}1&0\\0&0\end{array}} \right| = 0$
${C_{31}} = {( - 1)^{3 + 1}}\left| {\begin{array}{*{20}{l}}0&0\\1&0\end{array}} \right| = 0$
${C_{32}} = {( - 1)^{3 + 2}}\left| {\begin{array}{*{20}{l}}1&0\\0&0\end{array}} \right| = 0$
${C_{33}} = {( - 1)^{3 + 3}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
Now, we have to determine the transpose of the cofactor matrix, we get
Here, columns change into rows, and rows change into columns.
Therefore, the transpose matrix is
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Now, we have to add the identity matrix to it and run row operations to try to move the identity matrix to the left in order to discover the inverse matrix. The inverse matrix will then appear to the right.
But an identity matrix is already present in the matrix to the left. Thus, the inverse matrix also qualifies as an identity matrix.
So, on turning the left matrix to right matrix we get
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Therefore, the inverse of the matrix $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$ is $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Option ‘B’ is correct
Note: Although it is a challenging task, it is possible to estimate the inverse of a 3 by 3 matrix by doing certain procedures. Even though it could appear challenging, the best way to get beyond it is to repeatedly use a sample problem to solve the question. So, student should follow the correct concept to determine the desired solution.
Formula Used: ${A^{ - 1}} = \dfrac{{adj(A)}}{{|A|}};|A| \ne 0$
Complete step by step solution: We are provided the matrix in the question that
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
And we are asked to determine the inverse of the given matrix
Now, we have to determine the cofactors of the given matrix, we have
${C_{11}} = {( - 1)^{1 + 1}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
${C_{12}} = {( - 1)^{1/2}}\left| {\begin{array}{*{20}{l}}0&0\\0&1\end{array}} \right| = 0$
${C_{13}} = {( - 1)^{1/3}}\left| {\begin{array}{*{20}{l}}0&1\\0&0\end{array}} \right| = 0$
$4{C_{21}} = {( - 1)^{2 + 1}}\left| {\begin{array}{*{20}{l}}0&0\\0&1\end{array}} \right| = 04$
${C_{22}} = {( - 1)^{2 + 2}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
${C_{23}} = {( - 1)^{2 + 3}}\left| {\begin{array}{*{20}{l}}1&0\\0&0\end{array}} \right| = 0$
${C_{31}} = {( - 1)^{3 + 1}}\left| {\begin{array}{*{20}{l}}0&0\\1&0\end{array}} \right| = 0$
${C_{32}} = {( - 1)^{3 + 2}}\left| {\begin{array}{*{20}{l}}1&0\\0&0\end{array}} \right| = 0$
${C_{33}} = {( - 1)^{3 + 3}}\left| {\begin{array}{*{20}{l}}1&0\\0&1\end{array}} \right| = 1$
Now, we have to determine the transpose of the cofactor matrix, we get
Here, columns change into rows, and rows change into columns.
Therefore, the transpose matrix is
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Now, we have to add the identity matrix to it and run row operations to try to move the identity matrix to the left in order to discover the inverse matrix. The inverse matrix will then appear to the right.
But an identity matrix is already present in the matrix to the left. Thus, the inverse matrix also qualifies as an identity matrix.
So, on turning the left matrix to right matrix we get
$\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Therefore, the inverse of the matrix $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$ is $\left[ {\begin{array}{*{20}{l}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$
Option ‘B’ is correct
Note: Although it is a challenging task, it is possible to estimate the inverse of a 3 by 3 matrix by doing certain procedures. Even though it could appear challenging, the best way to get beyond it is to repeatedly use a sample problem to solve the question. So, student should follow the correct concept to determine the desired solution.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
