
The image of the point \[\left( {4, - 3} \right)\] with respect to the line \[y = x\] is:
A. \[\left( { - 4, - 3} \right)\]
B. \[\left( {3,4} \right)\]
C. \[\left( { - 4,3} \right)\]
D. \[\left( { - 3,4} \right)\]
Answer
174.6k+ views
Hint: The formula to find the image point with respect to the line is \[\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = - 2\left[ {\dfrac{{a{x_1} + b{y_1} + c}}{{{a^2} + {b^2}}}} \right]\], where \[\left( {{x_1},{y_1}} \right)\] is the point on the line, \[a\] is coefficient of the \[x\]-variable, is coefficient of the \[y\]-variable and \[c\] be any constant term in the equation of the line.
Apply this formula to find the image point with respect to the line, and then use the given conditions to find the required value.
Complete step-by-step solution
We are given that the equation of the line is \[y = x\] and the point is \[\left( {4, - 3} \right)\].
Rewriting the given equation, we get
\[x - y = 0\]
We know the formula to find the image point with respect to the line is \[\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = - 2\left[ {\dfrac{{a{x_1} + b{y_1} + c}}{{{a^2} + {b^2}}}} \right]\], where \[\left( {{x_1},{y_1}} \right)\] is the point on the line, \[a\] is coefficient of the \[x\]-variable, \[b\] is coefficient of the \[y\]-variable and \[c\] be any constant term in the equation of the line.
Finding the values of \[{x_1}\], \[{y_1}\], \[a\], \[b\] and \[c\] from the given equation of the line, we get
\[{x_1} = 4\]
\[{y_1} = - 3\]
\[a = 1\]
\[b = - 1\]
\[c = 0\]
Substituting these values in the above formula to find the image point with respect to the line, we get
\[
\Rightarrow \dfrac{{x - 4}}{1} = \dfrac{{y - \left( { - 3} \right)}}{{ - 1}} = - 2\left[ {\dfrac{{1\left( 4 \right) - 1\left( { - 3} \right) + 0}}{{{1^2} + {{\left( { - 1} \right)}^2}}}} \right] \\
\Rightarrow x - 4 = \dfrac{{y + 3}}{{ - 1}} = - 2\left( {\dfrac{{4 + 3}}{{1 + 1}}} \right) \\
\Rightarrow x - 4 = - y - 3 = - 2 \times \dfrac{7}{2} \\
\Rightarrow x - 4 = - y - 3 = - 7 \\
\]
Separating the above equations, we get
\[x - 4 = - 7{\text{ ......}}\left( 1 \right)\]
\[ - y - 3 = - 7{\text{ ......}}\left( 2 \right)\]
Adding the equation \[\left( 1 \right)\] by 4 on each of the sides, we get
\[
\Rightarrow x - 4 + 4 = - 7 + 4 \\
\Rightarrow x = - 3 \\
\]
Adding the equation \[\left( 2 \right)\] by 3 on each of the sides, we get
\[
\Rightarrow - y - 3 + 3 = - 7 + 3 \\
\Rightarrow - y = - 4 \\
\]
Multiplying the above equation by \[ - 1\] on each of the sides, we get
\[ \Rightarrow y = 4\]
Thus, \[x = - 3\] and \[y = 4\].
Therefore, the image point of the given point with respect to the line is \[\left( { - 3,4} \right)\].
Hence, the option D is correct.
Note: In solving these types of questions, you should be familiar with the formula of image point with respect to a line. Then use the given conditions and values given in the question, and substitute the values in this formula, to find the required value. Also, we are supposed to write the values properly to avoid any miscalculation.
Apply this formula to find the image point with respect to the line, and then use the given conditions to find the required value.
Complete step-by-step solution
We are given that the equation of the line is \[y = x\] and the point is \[\left( {4, - 3} \right)\].
Rewriting the given equation, we get
\[x - y = 0\]
We know the formula to find the image point with respect to the line is \[\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = - 2\left[ {\dfrac{{a{x_1} + b{y_1} + c}}{{{a^2} + {b^2}}}} \right]\], where \[\left( {{x_1},{y_1}} \right)\] is the point on the line, \[a\] is coefficient of the \[x\]-variable, \[b\] is coefficient of the \[y\]-variable and \[c\] be any constant term in the equation of the line.
Finding the values of \[{x_1}\], \[{y_1}\], \[a\], \[b\] and \[c\] from the given equation of the line, we get
\[{x_1} = 4\]
\[{y_1} = - 3\]
\[a = 1\]
\[b = - 1\]
\[c = 0\]
Substituting these values in the above formula to find the image point with respect to the line, we get
\[
\Rightarrow \dfrac{{x - 4}}{1} = \dfrac{{y - \left( { - 3} \right)}}{{ - 1}} = - 2\left[ {\dfrac{{1\left( 4 \right) - 1\left( { - 3} \right) + 0}}{{{1^2} + {{\left( { - 1} \right)}^2}}}} \right] \\
\Rightarrow x - 4 = \dfrac{{y + 3}}{{ - 1}} = - 2\left( {\dfrac{{4 + 3}}{{1 + 1}}} \right) \\
\Rightarrow x - 4 = - y - 3 = - 2 \times \dfrac{7}{2} \\
\Rightarrow x - 4 = - y - 3 = - 7 \\
\]
Separating the above equations, we get
\[x - 4 = - 7{\text{ ......}}\left( 1 \right)\]
\[ - y - 3 = - 7{\text{ ......}}\left( 2 \right)\]
Adding the equation \[\left( 1 \right)\] by 4 on each of the sides, we get
\[
\Rightarrow x - 4 + 4 = - 7 + 4 \\
\Rightarrow x = - 3 \\
\]
Adding the equation \[\left( 2 \right)\] by 3 on each of the sides, we get
\[
\Rightarrow - y - 3 + 3 = - 7 + 3 \\
\Rightarrow - y = - 4 \\
\]
Multiplying the above equation by \[ - 1\] on each of the sides, we get
\[ \Rightarrow y = 4\]
Thus, \[x = - 3\] and \[y = 4\].
Therefore, the image point of the given point with respect to the line is \[\left( { - 3,4} \right)\].
Hence, the option D is correct.
Note: In solving these types of questions, you should be familiar with the formula of image point with respect to a line. Then use the given conditions and values given in the question, and substitute the values in this formula, to find the required value. Also, we are supposed to write the values properly to avoid any miscalculation.
Recently Updated Pages
Sets, Relations, and Functions Mock Test 2025-26

JEE Main Mock Test 2025-26: Purification & Characterisation of Organic Compounds

JEE Main 2025 Coordination Compounds Mock Test – Free Practice Online

JEE Main 2025-26 Equilibrium Mock Test: Free Practice Online

JEE Main Mock Test 2025-26: D and F Block Elements Practice

JEE Main Mock Test 2025-26: Chapter-Wise Practice Papers

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

NIT Cutoff Percentile for 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

JEE Main Syllabus 2025 (Updated)

Other Pages
NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles - 2025-26

NCERT Solutions For Class 10 Maths Chapter 13 Statistics - 2025-26

NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume - 2025-26

NCERT Solutions For Class 10 Maths Chapter 14 Probability - 2025-26

All Mensuration Formulas with Examples and Quick Revision

NCERT Solutions For Class 10 Maths Chapter 15 Probability in Hindi - 2025-26
