
The half-life period of a second order reaction is:
(A) Proportional to the initial concentration of reactants
(B) Independent of the initial concentration of reactants
(C) Inversely proportional to the initial concentration of reactants
(D) Inversely proportional to the square of initial concentration of the reactants
Answer
450.1k+ views
Hint: The half life period of any reaction can be understood as the time that is needed for the concentration of the reactants to be reduced to exactly half of the original value of their concentrations.
Complete Step-by-Step answer:
The integrated form of the second order rate law can be represented as follows:
This equation can be simplified further and be represented as follows:
Now, since ;
When , the given simplified rate equation transforms to:
\
Hence,
From this equation above, we have established a relation between the concentration of the reactant and the half-life period, for a second order reaction.
Upon observation, we can deduce that in second order reactions, the half-life period is inversely proportional to the initial concentration of the reactant.
Hence, Option C is the correct option.
Note: This inverse relationship indirectly states that when the initial concentration of the reactant is increased, there is a higher probability of the two reactant molecules interacting to form a product. This equation also implies that since the half-life is longer when the concentrations are low, species decaying according to second-order kinetics may exist for a longer amount of time if their initial concentrations are small.
Complete Step-by-Step answer:
The integrated form of the second order rate law can be represented as follows:
This equation can be simplified further and be represented as follows:
Now, since
When
\
Hence,
From this equation above, we have established a relation between the concentration of the reactant and the half-life period, for a second order reaction.
Upon observation, we can deduce that in second order reactions, the half-life period is inversely proportional to the initial concentration of the reactant.
Hence, Option C is the correct option.
Note: This inverse relationship indirectly states that when the initial concentration of the reactant is increased, there is a higher probability of the two reactant molecules interacting to form a product. This equation also implies that since the half-life is longer when the concentrations are low, species decaying according to second-order kinetics may exist for a longer amount of time if their initial concentrations are small.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
EMI starts from ₹3,487.34 per month
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether
