
The gradient of one of the lines of ${{x}^{2}}+hxy+2{{y}^{2}}=0$ is twice that of the other, then $h=$
A. $\pm 3$
B. $\pm \dfrac{3}{2}$
C. $\pm 2$
D. $\pm 1$
Answer
218.7k+ views
Hint: In this question, we are to find the value of the given variable. For this, we use the equation formed by the gradients of the given two lines. So, we need to use the product and sum of the slopes of a pair of straight lines. By using them, we get the required relation from the given pair of straight lines equation.
Formula Used:The combined equation of pair of straight lines is written as
$H\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}=0$
This is called a homogenous equation of second degree in $x$ and $y$
And
$S\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
This is called a general equation of second degree in $x$ and $y$.
If ${{h}^{2}}If ${{h}^{2}}=ab$, then $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents coincident lines.
If ${{h}^{2}}>ab$, then $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents two real and different lines that pass through the origin.
Thus, the equation $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents two lines. They are
$ax+hy\pm y\sqrt{{{h}^{2}}-ab}=0$
If $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents a pair of lines, then the sum of the slopes of the lines is $\dfrac{-2h}{b}$ and the product of the slopes of the lines is $\dfrac{a}{b}$.
Complete step by step solution:Given equation is
${{x}^{2}}+hxy+2{{y}^{2}}=0$
By comparing with the equation $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$, we get
$a=1;h=\dfrac{h}{2};b=2$
Here, for calculating the required variable, consider $\dfrac{h}{2}$ as its value.
Consider the gradients of these two lines as ${{m}_{1}}$ and ${{m}_{2}}$.
It is given that, ${{m}_{1}}=2{{m}_{2}}\text{ }...(1)$
The sum of these two gradients is
\[{{m}_{1}}+{{m}_{2}}=\dfrac{-2h}{b}\text{=}\dfrac{-h}{2}\text{ }...(2)\]
And the product of these two gradients is
${{m}_{1}}{{m}_{2}}=\dfrac{a}{b}=\dfrac{1}{2}\text{ }...(3)$
Substituting (1) in (2), we get
$\begin{align}
& 2{{m}_{2}}+{{m}_{2}}=\dfrac{-2h}{b} \\
& \Rightarrow 3{{m}_{2}}=\dfrac{-2h}{b} \\
& \Rightarrow {{m}_{2}}=\dfrac{-2h}{3b}\text{=}\dfrac{-h}{6}\text{ }...(4) \\
\end{align}$
Substituting (1) in (3) and on simplifying, we get
$\begin{align}
& {{m}_{1}}{{m}_{2}}=\dfrac{1}{2} \\
& \Rightarrow 2{{m}_{2}}^{2}=\dfrac{1}{2} \\
& \Rightarrow 2{{\left( \dfrac{-h}{6} \right)}^{2}}=\dfrac{1}{2} \\
& \Rightarrow \dfrac{2{{h}^{2}}}{36}=\dfrac{1}{2} \\
& \Rightarrow {{h}^{2}}=9 \\
& \therefore h=\pm 3 \\
\end{align}$
Thus, the value is $h=\pm 3$.
Option ‘C’ is correct
Note: Here to find the required variable value. For this, we use the equation that relates the coefficients of the equation of pair of straight lines with their gradients. So, we need to use the sum and product of the gradients of these two straight lines.
Formula Used:The combined equation of pair of straight lines is written as
$H\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}=0$
This is called a homogenous equation of second degree in $x$ and $y$
And
$S\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
This is called a general equation of second degree in $x$ and $y$.
If ${{h}^{2}}
If ${{h}^{2}}>ab$, then $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents two real and different lines that pass through the origin.
Thus, the equation $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents two lines. They are
$ax+hy\pm y\sqrt{{{h}^{2}}-ab}=0$
If $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents a pair of lines, then the sum of the slopes of the lines is $\dfrac{-2h}{b}$ and the product of the slopes of the lines is $\dfrac{a}{b}$.
Complete step by step solution:Given equation is
${{x}^{2}}+hxy+2{{y}^{2}}=0$
By comparing with the equation $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$, we get
$a=1;h=\dfrac{h}{2};b=2$
Here, for calculating the required variable, consider $\dfrac{h}{2}$ as its value.
Consider the gradients of these two lines as ${{m}_{1}}$ and ${{m}_{2}}$.
It is given that, ${{m}_{1}}=2{{m}_{2}}\text{ }...(1)$
The sum of these two gradients is
\[{{m}_{1}}+{{m}_{2}}=\dfrac{-2h}{b}\text{=}\dfrac{-h}{2}\text{ }...(2)\]
And the product of these two gradients is
${{m}_{1}}{{m}_{2}}=\dfrac{a}{b}=\dfrac{1}{2}\text{ }...(3)$
Substituting (1) in (2), we get
$\begin{align}
& 2{{m}_{2}}+{{m}_{2}}=\dfrac{-2h}{b} \\
& \Rightarrow 3{{m}_{2}}=\dfrac{-2h}{b} \\
& \Rightarrow {{m}_{2}}=\dfrac{-2h}{3b}\text{=}\dfrac{-h}{6}\text{ }...(4) \\
\end{align}$
Substituting (1) in (3) and on simplifying, we get
$\begin{align}
& {{m}_{1}}{{m}_{2}}=\dfrac{1}{2} \\
& \Rightarrow 2{{m}_{2}}^{2}=\dfrac{1}{2} \\
& \Rightarrow 2{{\left( \dfrac{-h}{6} \right)}^{2}}=\dfrac{1}{2} \\
& \Rightarrow \dfrac{2{{h}^{2}}}{36}=\dfrac{1}{2} \\
& \Rightarrow {{h}^{2}}=9 \\
& \therefore h=\pm 3 \\
\end{align}$
Thus, the value is $h=\pm 3$.
Option ‘C’ is correct
Note: Here to find the required variable value. For this, we use the equation that relates the coefficients of the equation of pair of straight lines with their gradients. So, we need to use the sum and product of the gradients of these two straight lines.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

