
The function $f\left( x \right) = \dfrac{{{e^{2x}} - 1}}{{{e^{2x}} + 1}}$ is
A. an increasing function
B. a decreasing function
C. an even function
D. None of these
Answer
232.8k+ views
Hint: To check a function increasing or decreasing, first order derivative test is used. Find the differentiation of the given function and equate it with zero to find the critical points. Use the concept that a function is increasing in the interval on which the first order derivative of the function is positive. Otherwise, it is decreasing.
Formula Used:
Quotient Rule: If $f\left( x \right)$ and $g\left( x \right)$ be two functions of $x$ then the differentiation of the function $\dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ is $\dfrac{d}{{dx}}\left\{ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right\} = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} - f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}}}{{{{\left\{ {g\left( x \right)} \right\}}^2}}}$, provided $g\left( x \right) \ne 0$
$\dfrac{d}{{dx}}\left( {{e^{mx}}} \right) = m{e^{mx}}$
$\dfrac{d}{{dx}}\left( c \right) = 0$, where $c$ is a constant.
Complete step by step solution:
The given function is $f\left( x \right) = \dfrac{{{e^{2x}} - 1}}{{{e^{2x}} + 1}}$
Differentiating the function with respect to $x$, we get
$f'\left( x \right) = \dfrac{{\left( {{e^{2x}} + 1} \right)\dfrac{d}{{dx}}\left( {{e^{2x}} - 1} \right) - \left( {{e^{2x}} - 1} \right)\dfrac{d}{{dx}}\left( {{e^{2x}} + 1} \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Now, $\dfrac{d}{{dx}}\left( {{e^{2x}} - 1} \right) = \dfrac{d}{{dx}}\left( {{e^{2x}}} \right) - \dfrac{d}{{dx}}\left( 1 \right) = 2{e^{2x}} - 0 = 2{e^{2x}}$
and $\dfrac{d}{{dx}}\left( {{e^{2x}} + 1} \right) = \dfrac{d}{{dx}}\left( {{e^{2x}}} \right) + \dfrac{d}{{dx}}\left( 1 \right) = 2{e^{2x}} + 0 = 2{e^{2x}}$
So, $f'\left( x \right) = \dfrac{{\left( {{e^{2x}} + 1} \right)\left( {2{e^{2x}}} \right) - \left( {{e^{2x}} - 1} \right)\left( {2{e^{2x}}} \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Simplify the expression.
Take the term $\left( {2{e^{2x}}} \right)$ as common from the numerator.
$ \Rightarrow f'\left( x \right) = \dfrac{{\left( {2{e^{2x}}} \right)\left\{ {\left( {{e^{2x}} + 1} \right) - \left( {{e^{2x}} - 1} \right)} \right\}}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
$ \Rightarrow f'\left( x \right) = \dfrac{{\left( {2{e^{2x}}} \right)\left( {{e^{2x}} + 1 - {e^{2x}} + 1} \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Cancel out the term ${e^{2x}}$ from the numerator.
$ \Rightarrow f'\left( x \right) = \dfrac{{\left( {2{e^{2x}}} \right)\left( 2 \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}} = \dfrac{{4{e^{2x}}}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Value of every perfect square expression is always positive and an exponential function is also always positive.
So, clearly, $f'\left( x \right) > 0$ for all real values of $x$.
Thus, the given function is an increasing function.
Option ‘A’ is correct
Note: Many students get confused about the condition for a function to be increasing and decreasing. They should remember that a function is increasing if the first order derivative of the function is positive for all real values of $x$ but if the first order derivative of a function is negative for all real values of $x$ then the function is decreasing. A function is even if the value of the function remains same after replacement of $x$ by $\left( { - x} \right)$ i.e. $f\left( { - x} \right) = f\left( x \right)$ and a function is odd if $f\left( { - x} \right) = - f\left( x \right)$.
Formula Used:
Quotient Rule: If $f\left( x \right)$ and $g\left( x \right)$ be two functions of $x$ then the differentiation of the function $\dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ is $\dfrac{d}{{dx}}\left\{ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right\} = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} - f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}}}{{{{\left\{ {g\left( x \right)} \right\}}^2}}}$, provided $g\left( x \right) \ne 0$
$\dfrac{d}{{dx}}\left( {{e^{mx}}} \right) = m{e^{mx}}$
$\dfrac{d}{{dx}}\left( c \right) = 0$, where $c$ is a constant.
Complete step by step solution:
The given function is $f\left( x \right) = \dfrac{{{e^{2x}} - 1}}{{{e^{2x}} + 1}}$
Differentiating the function with respect to $x$, we get
$f'\left( x \right) = \dfrac{{\left( {{e^{2x}} + 1} \right)\dfrac{d}{{dx}}\left( {{e^{2x}} - 1} \right) - \left( {{e^{2x}} - 1} \right)\dfrac{d}{{dx}}\left( {{e^{2x}} + 1} \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Now, $\dfrac{d}{{dx}}\left( {{e^{2x}} - 1} \right) = \dfrac{d}{{dx}}\left( {{e^{2x}}} \right) - \dfrac{d}{{dx}}\left( 1 \right) = 2{e^{2x}} - 0 = 2{e^{2x}}$
and $\dfrac{d}{{dx}}\left( {{e^{2x}} + 1} \right) = \dfrac{d}{{dx}}\left( {{e^{2x}}} \right) + \dfrac{d}{{dx}}\left( 1 \right) = 2{e^{2x}} + 0 = 2{e^{2x}}$
So, $f'\left( x \right) = \dfrac{{\left( {{e^{2x}} + 1} \right)\left( {2{e^{2x}}} \right) - \left( {{e^{2x}} - 1} \right)\left( {2{e^{2x}}} \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Simplify the expression.
Take the term $\left( {2{e^{2x}}} \right)$ as common from the numerator.
$ \Rightarrow f'\left( x \right) = \dfrac{{\left( {2{e^{2x}}} \right)\left\{ {\left( {{e^{2x}} + 1} \right) - \left( {{e^{2x}} - 1} \right)} \right\}}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
$ \Rightarrow f'\left( x \right) = \dfrac{{\left( {2{e^{2x}}} \right)\left( {{e^{2x}} + 1 - {e^{2x}} + 1} \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Cancel out the term ${e^{2x}}$ from the numerator.
$ \Rightarrow f'\left( x \right) = \dfrac{{\left( {2{e^{2x}}} \right)\left( 2 \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}} = \dfrac{{4{e^{2x}}}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Value of every perfect square expression is always positive and an exponential function is also always positive.
So, clearly, $f'\left( x \right) > 0$ for all real values of $x$.
Thus, the given function is an increasing function.
Option ‘A’ is correct
Note: Many students get confused about the condition for a function to be increasing and decreasing. They should remember that a function is increasing if the first order derivative of the function is positive for all real values of $x$ but if the first order derivative of a function is negative for all real values of $x$ then the function is decreasing. A function is even if the value of the function remains same after replacement of $x$ by $\left( { - x} \right)$ i.e. $f\left( { - x} \right) = f\left( x \right)$ and a function is odd if $f\left( { - x} \right) = - f\left( x \right)$.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

