
The function $f\left( x \right) = \dfrac{{{e^{2x}} - 1}}{{{e^{2x}} + 1}}$ is
A. an increasing function
B. a decreasing function
C. an even function
D. None of these
Answer
216.3k+ views
Hint: To check a function increasing or decreasing, first order derivative test is used. Find the differentiation of the given function and equate it with zero to find the critical points. Use the concept that a function is increasing in the interval on which the first order derivative of the function is positive. Otherwise, it is decreasing.
Formula Used:
Quotient Rule: If $f\left( x \right)$ and $g\left( x \right)$ be two functions of $x$ then the differentiation of the function $\dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ is $\dfrac{d}{{dx}}\left\{ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right\} = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} - f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}}}{{{{\left\{ {g\left( x \right)} \right\}}^2}}}$, provided $g\left( x \right) \ne 0$
$\dfrac{d}{{dx}}\left( {{e^{mx}}} \right) = m{e^{mx}}$
$\dfrac{d}{{dx}}\left( c \right) = 0$, where $c$ is a constant.
Complete step by step solution:
The given function is $f\left( x \right) = \dfrac{{{e^{2x}} - 1}}{{{e^{2x}} + 1}}$
Differentiating the function with respect to $x$, we get
$f'\left( x \right) = \dfrac{{\left( {{e^{2x}} + 1} \right)\dfrac{d}{{dx}}\left( {{e^{2x}} - 1} \right) - \left( {{e^{2x}} - 1} \right)\dfrac{d}{{dx}}\left( {{e^{2x}} + 1} \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Now, $\dfrac{d}{{dx}}\left( {{e^{2x}} - 1} \right) = \dfrac{d}{{dx}}\left( {{e^{2x}}} \right) - \dfrac{d}{{dx}}\left( 1 \right) = 2{e^{2x}} - 0 = 2{e^{2x}}$
and $\dfrac{d}{{dx}}\left( {{e^{2x}} + 1} \right) = \dfrac{d}{{dx}}\left( {{e^{2x}}} \right) + \dfrac{d}{{dx}}\left( 1 \right) = 2{e^{2x}} + 0 = 2{e^{2x}}$
So, $f'\left( x \right) = \dfrac{{\left( {{e^{2x}} + 1} \right)\left( {2{e^{2x}}} \right) - \left( {{e^{2x}} - 1} \right)\left( {2{e^{2x}}} \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Simplify the expression.
Take the term $\left( {2{e^{2x}}} \right)$ as common from the numerator.
$ \Rightarrow f'\left( x \right) = \dfrac{{\left( {2{e^{2x}}} \right)\left\{ {\left( {{e^{2x}} + 1} \right) - \left( {{e^{2x}} - 1} \right)} \right\}}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
$ \Rightarrow f'\left( x \right) = \dfrac{{\left( {2{e^{2x}}} \right)\left( {{e^{2x}} + 1 - {e^{2x}} + 1} \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Cancel out the term ${e^{2x}}$ from the numerator.
$ \Rightarrow f'\left( x \right) = \dfrac{{\left( {2{e^{2x}}} \right)\left( 2 \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}} = \dfrac{{4{e^{2x}}}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Value of every perfect square expression is always positive and an exponential function is also always positive.
So, clearly, $f'\left( x \right) > 0$ for all real values of $x$.
Thus, the given function is an increasing function.
Option ‘A’ is correct
Note: Many students get confused about the condition for a function to be increasing and decreasing. They should remember that a function is increasing if the first order derivative of the function is positive for all real values of $x$ but if the first order derivative of a function is negative for all real values of $x$ then the function is decreasing. A function is even if the value of the function remains same after replacement of $x$ by $\left( { - x} \right)$ i.e. $f\left( { - x} \right) = f\left( x \right)$ and a function is odd if $f\left( { - x} \right) = - f\left( x \right)$.
Formula Used:
Quotient Rule: If $f\left( x \right)$ and $g\left( x \right)$ be two functions of $x$ then the differentiation of the function $\dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ is $\dfrac{d}{{dx}}\left\{ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right\} = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} - f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}}}{{{{\left\{ {g\left( x \right)} \right\}}^2}}}$, provided $g\left( x \right) \ne 0$
$\dfrac{d}{{dx}}\left( {{e^{mx}}} \right) = m{e^{mx}}$
$\dfrac{d}{{dx}}\left( c \right) = 0$, where $c$ is a constant.
Complete step by step solution:
The given function is $f\left( x \right) = \dfrac{{{e^{2x}} - 1}}{{{e^{2x}} + 1}}$
Differentiating the function with respect to $x$, we get
$f'\left( x \right) = \dfrac{{\left( {{e^{2x}} + 1} \right)\dfrac{d}{{dx}}\left( {{e^{2x}} - 1} \right) - \left( {{e^{2x}} - 1} \right)\dfrac{d}{{dx}}\left( {{e^{2x}} + 1} \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Now, $\dfrac{d}{{dx}}\left( {{e^{2x}} - 1} \right) = \dfrac{d}{{dx}}\left( {{e^{2x}}} \right) - \dfrac{d}{{dx}}\left( 1 \right) = 2{e^{2x}} - 0 = 2{e^{2x}}$
and $\dfrac{d}{{dx}}\left( {{e^{2x}} + 1} \right) = \dfrac{d}{{dx}}\left( {{e^{2x}}} \right) + \dfrac{d}{{dx}}\left( 1 \right) = 2{e^{2x}} + 0 = 2{e^{2x}}$
So, $f'\left( x \right) = \dfrac{{\left( {{e^{2x}} + 1} \right)\left( {2{e^{2x}}} \right) - \left( {{e^{2x}} - 1} \right)\left( {2{e^{2x}}} \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Simplify the expression.
Take the term $\left( {2{e^{2x}}} \right)$ as common from the numerator.
$ \Rightarrow f'\left( x \right) = \dfrac{{\left( {2{e^{2x}}} \right)\left\{ {\left( {{e^{2x}} + 1} \right) - \left( {{e^{2x}} - 1} \right)} \right\}}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
$ \Rightarrow f'\left( x \right) = \dfrac{{\left( {2{e^{2x}}} \right)\left( {{e^{2x}} + 1 - {e^{2x}} + 1} \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Cancel out the term ${e^{2x}}$ from the numerator.
$ \Rightarrow f'\left( x \right) = \dfrac{{\left( {2{e^{2x}}} \right)\left( 2 \right)}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}} = \dfrac{{4{e^{2x}}}}{{{{\left( {{e^{2x}} + 1} \right)}^2}}}$
Value of every perfect square expression is always positive and an exponential function is also always positive.
So, clearly, $f'\left( x \right) > 0$ for all real values of $x$.
Thus, the given function is an increasing function.
Option ‘A’ is correct
Note: Many students get confused about the condition for a function to be increasing and decreasing. They should remember that a function is increasing if the first order derivative of the function is positive for all real values of $x$ but if the first order derivative of a function is negative for all real values of $x$ then the function is decreasing. A function is even if the value of the function remains same after replacement of $x$ by $\left( { - x} \right)$ i.e. $f\left( { - x} \right) = f\left( x \right)$ and a function is odd if $f\left( { - x} \right) = - f\left( x \right)$.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

