The equivalent inductance of two inductors is 2.4 mH when connected in parallel and 10 mH when connected in series. The difference between two inductance is $($neglecting mutual induction between coils$)$.
(A) 3mH
(B) 2mH
(C) 4mH
(D) 16mH
Answer
Verified
116.1k+ views
Hint: When inductor connected in series combination then equivalent inductance will be given as
${L_{eq}} = {L_1} + {L_2} + {L_3} + ....$
When inductors are connected in parallel combination then equivalent inductance will be given as
$\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} + \dfrac{1}{{{L_3}}} + .....$
Step by step answer: Given that 2 inductors ${L_1}$ and ${L_2}(Let)$ are connected in parallel then their equivalent inductance is 2.4 mH.
i.e., $\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}}$
So, \[\dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} = \dfrac{1}{{2.4}}\]
$\dfrac{{{L_2} + {L_1}}}{{{L_1}{L_2}}} = \dfrac{{10}}{{24}}$
${L_1}{L_2} = \dfrac{{24}}{{10}}({L_1} + {L_2})$ …..(1)
When ${L_1}$ and ${L_2}$ are connected in series then their equivalent inductance is 10 mH.
i.e., ${L_{eq}} = {L_1} + {L_2}$
$10 = {L_1} + {L_2}$ …..(2)
From equation 1 & 2 we get
${L_1}{L_2} = \dfrac{{24}}{{10}} \times 10$
${L_1}{L_2} = 24$
So, ${L_1} = \dfrac{{24}}{{{L_2}}}$ …..(3)
On putting the value of ${L_1}$ in equation 2
$\dfrac{{24}}{{{L_2}}} + {L_2} = 10$
$\dfrac{{24 + L_2^2}}{{{L_2}}} = 10$
$24 + L_2^2 = 10{L_2}$
$L_2^2 - 10{L_2} + 24 = 0$
$L_2^2 - 6{L_2} - 4{L_2} + 24 = 0$
${L_2}({L_2} - 6) - 4({L_2} - 6) = 0$
$({L_2} - 6)({L_2} - 4) = 0$
${L_2} = 4,6$ ….(4)
Now put the value of ${L_2}$ in equation 3
We will get ${L_1}$.
Here we have 2 values of ${L_2}$. So, put one by one each value and will get ${L_1}$.
When ${L_2} = 4mH$
Then from equation 3
${L_1} = \dfrac{{24}}{4}$
${L_1} = 6mH$ …..(6)
When ${L_2} = 6mH$
Then from equation 3
${L_1} = \dfrac{{24}}{6}$
${L_1} = \dfrac{{24}}{6}$
${L_1} = 4mH$ …..(6)
So, we will get 2 combinations of ${L_1}$ & ${L_2}$ which are
If ${L_1} = 4mH$ If ${L_1} = 6mH$
Then ${L_2} = 6mH$ then ${L_2} = 4mH$
Now, we have to calculate the difference between ${L_1}$ and ${L_2}$. Which is
${L_1} - {L_2} = 6 - 4 = 2mH$
So, from both combinations of ${L_1}$ and ${L_2}$ we will get a difference between them of 2 mH.
Hence, option B is the correct answer. 2mH
Note: In many problems of inductors, they can ask for current and voltage.
In series combination, the value of current in each inductor is the same. But voltage is different.
In parallel combination, the potential difference i.e., voltage across each inductor is same but current is different.
${L_{eq}} = {L_1} + {L_2} + {L_3} + ....$
When inductors are connected in parallel combination then equivalent inductance will be given as
$\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} + \dfrac{1}{{{L_3}}} + .....$
Step by step answer: Given that 2 inductors ${L_1}$ and ${L_2}(Let)$ are connected in parallel then their equivalent inductance is 2.4 mH.
i.e., $\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}}$
So, \[\dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} = \dfrac{1}{{2.4}}\]
$\dfrac{{{L_2} + {L_1}}}{{{L_1}{L_2}}} = \dfrac{{10}}{{24}}$
${L_1}{L_2} = \dfrac{{24}}{{10}}({L_1} + {L_2})$ …..(1)
When ${L_1}$ and ${L_2}$ are connected in series then their equivalent inductance is 10 mH.
i.e., ${L_{eq}} = {L_1} + {L_2}$
$10 = {L_1} + {L_2}$ …..(2)
From equation 1 & 2 we get
${L_1}{L_2} = \dfrac{{24}}{{10}} \times 10$
${L_1}{L_2} = 24$
So, ${L_1} = \dfrac{{24}}{{{L_2}}}$ …..(3)
On putting the value of ${L_1}$ in equation 2
$\dfrac{{24}}{{{L_2}}} + {L_2} = 10$
$\dfrac{{24 + L_2^2}}{{{L_2}}} = 10$
$24 + L_2^2 = 10{L_2}$
$L_2^2 - 10{L_2} + 24 = 0$
$L_2^2 - 6{L_2} - 4{L_2} + 24 = 0$
${L_2}({L_2} - 6) - 4({L_2} - 6) = 0$
$({L_2} - 6)({L_2} - 4) = 0$
${L_2} = 4,6$ ….(4)
Now put the value of ${L_2}$ in equation 3
We will get ${L_1}$.
Here we have 2 values of ${L_2}$. So, put one by one each value and will get ${L_1}$.
When ${L_2} = 4mH$
Then from equation 3
${L_1} = \dfrac{{24}}{4}$
${L_1} = 6mH$ …..(6)
When ${L_2} = 6mH$
Then from equation 3
${L_1} = \dfrac{{24}}{6}$
${L_1} = \dfrac{{24}}{6}$
${L_1} = 4mH$ …..(6)
So, we will get 2 combinations of ${L_1}$ & ${L_2}$ which are
If ${L_1} = 4mH$ If ${L_1} = 6mH$
Then ${L_2} = 6mH$ then ${L_2} = 4mH$
Now, we have to calculate the difference between ${L_1}$ and ${L_2}$. Which is
${L_1} - {L_2} = 6 - 4 = 2mH$
So, from both combinations of ${L_1}$ and ${L_2}$ we will get a difference between them of 2 mH.
Hence, option B is the correct answer. 2mH
Note: In many problems of inductors, they can ask for current and voltage.
In series combination, the value of current in each inductor is the same. But voltage is different.
In parallel combination, the potential difference i.e., voltage across each inductor is same but current is different.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics