
The equation of the plane passing through the points $(-1,-2,0),(2,3,5)$ and parallel to the line $[\overrightarrow{r}=-3\widehat{j}+\widehat{k}+\lambda (2\widehat{i}+5\widehat{j}-\widehat{k})]$ is
A. $[\overrightarrow{r}\cdot (-30\widehat{i}+13\widehat{j}+5\widehat{k})=4]$
B. $[\overrightarrow{r}\cdot (30\widehat{i}+13\widehat{j}+5\widehat{k})=4]$
C. $[\overrightarrow{r}\cdot (30\widehat{i}+13\widehat{j}-5\widehat{k})=4]$
D. $[\overrightarrow{r}\cdot (30\widehat{i}-13\widehat{j}-5\widehat{k})=4]$
Answer
163.2k+ views
Hint: The equation of the plane passing through any point $[\left( p,q,r \right)]$ is
$[a\left( xp \right)+b\left( yq \right)+c\left( zr \right)=0]$ and
The vector equation of a plane passing through any points $[\left( a,b,c \right)]$ is
$[a\widehat{i}+b\widehat{j}+c\widehat{k}]$
and the equation of plane with the intercept $[\alpha ,\beta ,\And \gamma]$ on the x-axis, y-axis and z-axis respectively is $[x+y+z=1]$
Complete step by step solution:Given, the equation of the plane passes through the points $(-1,-2,0)$. So, the equation of the plane is
$[\begin{align}
& \Rightarrow a\left( x\left( -1 \right) \right)+b\left( y\left( -2 \right) \right)+c\left( z0 \right)=0 \\
& \Rightarrow a\left( x+1 \right)+b\left( y+2 \right)+c(z0)=0\text{ }...(1) \\
\end{align}]$
Also, the plane passes through the points $[\left( 2,3,5 \right)]$. So, the equation will be
$[\begin{align}
& \Rightarrow a\left( 2+1 \right)+b\left( 3+2 \right)+c(50)=0~ \\
& \Rightarrow 3a+5b+5c=0\text{ }...(2) \\
\end{align}]$
Since the equation of the plane is parallel to the line $[\overrightarrow{r}=-3\widehat{j}+\widehat{k}+\lambda (2\widehat{i}+5\widehat{j}-\widehat{k})]$, the coordinates of the plane are $[\left( 2,5,-1 \right)]$. So, the equation will be
$[2a+5bc=0~...(3)]$
From equations (2) and (3) we get $[{{x}_{1}}=3,\text{ }{{y}_{1}}=5\text{ }{{z}_{1}}=5]$ and $[{{x}_{2}}=2,\text{ }{{y}_{2}}=5\text{ }{{z}_{2}}=-1]$. So, we get
$[\begin{align}
& \Rightarrow \dfrac{a}{{{y}_{1}}{{z}_{2}}-{{y}_{2}}{{z}_{1}}}=\dfrac{b}{{{z}_{1}}{{x}_{2}}-{{z}_{2}}{{x}_{1}}}=\dfrac{c}{{{x}_{1}}{{y}_{2}}-{{x}_{2}}{{y}_{1}}} \\
& \Rightarrow ~\dfrac{a}{5\times \left( -1 \right)-5\times 5}=\dfrac{b}{5\times 2-\left( -1 \right)\times 3}=\dfrac{c}{3\times 5-2\times 5} \\
& \Rightarrow \dfrac{a}{-5-25}=\dfrac{b}{10+3}=\dfrac{c}{15-10} \\
& \begin{array}{*{35}{l}}
\Rightarrow \dfrac{a}{-30}=\dfrac{b}{13}=\dfrac{c}{5}=\lambda \\
a=30\lambda ,~\text{ }b=13\lambda ,~\text{ }c=5\lambda \\
\end{array} \\
\end{align}]$
From equation (1)
$[\begin{align}
& \Rightarrow 30\lambda \left( x+1 \right)+13\lambda \left( y+2 \right)+5\lambda \left( z0 \right)=0 \\
& \Rightarrow 30\left( x+1 \right)+13\left( y+2 \right)+5\left( z0 \right)=0 \\
& \Rightarrow 30x30+13y+26+5z=0 \\
& \Rightarrow 30x+13y+5z=3026 \\
& \Rightarrow 30x+13y+5z=4 \\
\end{align}]$
Hence the equation of plane is $[30x+13y+5z=4]$ and vector form of equation is $[\overrightarrow{r}\cdot (-30\widehat{i}+13\widehat{j}+5\widehat{k})=4]$
Thus, Option (A) is correct.
Note: The vector equation of the plane that has three noncollinear points with position vectors $[\widehat{i},\widehat{j},\widehat{k}]$ is $[(\overrightarrow{r}-\widehat{i}).[(\widehat{j}-\widehat{i})times (\widehat{k}-\widehat{i})]=0]$. The direction ratios of the line are proportional to the direction of the cosine line.
$[a\left( xp \right)+b\left( yq \right)+c\left( zr \right)=0]$ and
The vector equation of a plane passing through any points $[\left( a,b,c \right)]$ is
$[a\widehat{i}+b\widehat{j}+c\widehat{k}]$
and the equation of plane with the intercept $[\alpha ,\beta ,\And \gamma]$ on the x-axis, y-axis and z-axis respectively is $[x+y+z=1]$
Complete step by step solution:Given, the equation of the plane passes through the points $(-1,-2,0)$. So, the equation of the plane is
$[\begin{align}
& \Rightarrow a\left( x\left( -1 \right) \right)+b\left( y\left( -2 \right) \right)+c\left( z0 \right)=0 \\
& \Rightarrow a\left( x+1 \right)+b\left( y+2 \right)+c(z0)=0\text{ }...(1) \\
\end{align}]$
Also, the plane passes through the points $[\left( 2,3,5 \right)]$. So, the equation will be
$[\begin{align}
& \Rightarrow a\left( 2+1 \right)+b\left( 3+2 \right)+c(50)=0~ \\
& \Rightarrow 3a+5b+5c=0\text{ }...(2) \\
\end{align}]$
Since the equation of the plane is parallel to the line $[\overrightarrow{r}=-3\widehat{j}+\widehat{k}+\lambda (2\widehat{i}+5\widehat{j}-\widehat{k})]$, the coordinates of the plane are $[\left( 2,5,-1 \right)]$. So, the equation will be
$[2a+5bc=0~...(3)]$
From equations (2) and (3) we get $[{{x}_{1}}=3,\text{ }{{y}_{1}}=5\text{ }{{z}_{1}}=5]$ and $[{{x}_{2}}=2,\text{ }{{y}_{2}}=5\text{ }{{z}_{2}}=-1]$. So, we get
$[\begin{align}
& \Rightarrow \dfrac{a}{{{y}_{1}}{{z}_{2}}-{{y}_{2}}{{z}_{1}}}=\dfrac{b}{{{z}_{1}}{{x}_{2}}-{{z}_{2}}{{x}_{1}}}=\dfrac{c}{{{x}_{1}}{{y}_{2}}-{{x}_{2}}{{y}_{1}}} \\
& \Rightarrow ~\dfrac{a}{5\times \left( -1 \right)-5\times 5}=\dfrac{b}{5\times 2-\left( -1 \right)\times 3}=\dfrac{c}{3\times 5-2\times 5} \\
& \Rightarrow \dfrac{a}{-5-25}=\dfrac{b}{10+3}=\dfrac{c}{15-10} \\
& \begin{array}{*{35}{l}}
\Rightarrow \dfrac{a}{-30}=\dfrac{b}{13}=\dfrac{c}{5}=\lambda \\
a=30\lambda ,~\text{ }b=13\lambda ,~\text{ }c=5\lambda \\
\end{array} \\
\end{align}]$
From equation (1)
$[\begin{align}
& \Rightarrow 30\lambda \left( x+1 \right)+13\lambda \left( y+2 \right)+5\lambda \left( z0 \right)=0 \\
& \Rightarrow 30\left( x+1 \right)+13\left( y+2 \right)+5\left( z0 \right)=0 \\
& \Rightarrow 30x30+13y+26+5z=0 \\
& \Rightarrow 30x+13y+5z=3026 \\
& \Rightarrow 30x+13y+5z=4 \\
\end{align}]$
Hence the equation of plane is $[30x+13y+5z=4]$ and vector form of equation is $[\overrightarrow{r}\cdot (-30\widehat{i}+13\widehat{j}+5\widehat{k})=4]$
Thus, Option (A) is correct.
Note: The vector equation of the plane that has three noncollinear points with position vectors $[\widehat{i},\widehat{j},\widehat{k}]$ is $[(\overrightarrow{r}-\widehat{i}).[(\widehat{j}-\widehat{i})times (\widehat{k}-\widehat{i})]=0]$. The direction ratios of the line are proportional to the direction of the cosine line.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges

NEET Total Marks 2025
