
The equation of the line perpendicular to the line $ax+by+c=0$ and passing through $(a,b)$ is equal to
A. $bx-ay=0$
B. $bx+ay-2ab=0$
C. $bx+ay=0$
D. None of these
Answer
219.6k+ views
Hint: In this question, we are to find the equation of the perpendicular line for the given equation. This is obtained by using the property of the straight line which states that the product of slopes of two perpendicular lines is $-1$.
Formula used: The standard equation for a line is $ax+by+c=0$.
The equation of a line that has a slope $m$ and passing through the point $({{x}_{1}},{{y}_{1}})$ is
$y-{{y}_{1}}=m(x-{{x}_{1}})$
The slope of a line $ax+by+c=0$ is $m=\dfrac{-a}{b}$
The slopes of two lines that are perpendicular lines are given by the condition,
${{m}_{1}}\times {{m}_{2}}=-1$
Complete step by step solution: Given line is $ax+by+c=0\text{ }...(1)$
The slope of line (1) is
${{m}_{1}}=\dfrac{-a}{b}$
Then, the slope of the line that is perpendicular to (1) is
$\begin{align}
& {{m}_{1}}\times {{m}_{2}}=-1 \\
& \Rightarrow {{m}_{2}}=\dfrac{-1}{{{m}_{1}}} \\
& \Rightarrow {{m}_{2}}=\dfrac{-1}{\dfrac{-a}{b}}=\dfrac{b}{a} \\
\end{align}$
Then, the equation with slope $m=\dfrac{b}{a}$ and passes through a point $({{x}_{1}},{{y}_{1}})=(a,b)$ is
$\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-b=\dfrac{b}{a}(x-a) \\
& \Rightarrow ay-ab=bx-ab \\
& \therefore bx-ay=0 \\
\end{align}$
Thus, Option (A) is correct.
Note: Here we need to remember that, the required line is perpendicular to the given line. Here we can also solve this by applying a direct equation i.e., $bx-ay+k=0$ where $k$ is a constant. By substituting the given point through the line passes, we get the $k$ value. Then, the required equation is obtained.
Formula used: The standard equation for a line is $ax+by+c=0$.
The equation of a line that has a slope $m$ and passing through the point $({{x}_{1}},{{y}_{1}})$ is
$y-{{y}_{1}}=m(x-{{x}_{1}})$
The slope of a line $ax+by+c=0$ is $m=\dfrac{-a}{b}$
The slopes of two lines that are perpendicular lines are given by the condition,
${{m}_{1}}\times {{m}_{2}}=-1$
Complete step by step solution: Given line is $ax+by+c=0\text{ }...(1)$
The slope of line (1) is
${{m}_{1}}=\dfrac{-a}{b}$
Then, the slope of the line that is perpendicular to (1) is
$\begin{align}
& {{m}_{1}}\times {{m}_{2}}=-1 \\
& \Rightarrow {{m}_{2}}=\dfrac{-1}{{{m}_{1}}} \\
& \Rightarrow {{m}_{2}}=\dfrac{-1}{\dfrac{-a}{b}}=\dfrac{b}{a} \\
\end{align}$
Then, the equation with slope $m=\dfrac{b}{a}$ and passes through a point $({{x}_{1}},{{y}_{1}})=(a,b)$ is
$\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-b=\dfrac{b}{a}(x-a) \\
& \Rightarrow ay-ab=bx-ab \\
& \therefore bx-ay=0 \\
\end{align}$
Thus, Option (A) is correct.
Note: Here we need to remember that, the required line is perpendicular to the given line. Here we can also solve this by applying a direct equation i.e., $bx-ay+k=0$ where $k$ is a constant. By substituting the given point through the line passes, we get the $k$ value. Then, the required equation is obtained.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Understanding Entropy Changes in Different Processes

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations And Combinations

Common Ion Effect: Concept, Applications, and Problem-Solving

Understanding Excess Pressure Inside a Liquid Drop

NCERT Solutions for Class 11 Maths Chapter 7 Permutations and Combinations

Understanding Elastic Collisions in Two Dimensions

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

