
The equation of the line perpendicular to the line $ax+by+c=0$ and passing through $(a,b)$ is equal to
A. $bx-ay=0$
B. $bx+ay-2ab=0$
C. $bx+ay=0$
D. None of these
Answer
163.5k+ views
Hint: In this question, we are to find the equation of the perpendicular line for the given equation. This is obtained by using the property of the straight line which states that the product of slopes of two perpendicular lines is $-1$.
Formula used: The standard equation for a line is $ax+by+c=0$.
The equation of a line that has a slope $m$ and passing through the point $({{x}_{1}},{{y}_{1}})$ is
$y-{{y}_{1}}=m(x-{{x}_{1}})$
The slope of a line $ax+by+c=0$ is $m=\dfrac{-a}{b}$
The slopes of two lines that are perpendicular lines are given by the condition,
${{m}_{1}}\times {{m}_{2}}=-1$
Complete step by step solution: Given line is $ax+by+c=0\text{ }...(1)$
The slope of line (1) is
${{m}_{1}}=\dfrac{-a}{b}$
Then, the slope of the line that is perpendicular to (1) is
$\begin{align}
& {{m}_{1}}\times {{m}_{2}}=-1 \\
& \Rightarrow {{m}_{2}}=\dfrac{-1}{{{m}_{1}}} \\
& \Rightarrow {{m}_{2}}=\dfrac{-1}{\dfrac{-a}{b}}=\dfrac{b}{a} \\
\end{align}$
Then, the equation with slope $m=\dfrac{b}{a}$ and passes through a point $({{x}_{1}},{{y}_{1}})=(a,b)$ is
$\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-b=\dfrac{b}{a}(x-a) \\
& \Rightarrow ay-ab=bx-ab \\
& \therefore bx-ay=0 \\
\end{align}$
Thus, Option (A) is correct.
Note: Here we need to remember that, the required line is perpendicular to the given line. Here we can also solve this by applying a direct equation i.e., $bx-ay+k=0$ where $k$ is a constant. By substituting the given point through the line passes, we get the $k$ value. Then, the required equation is obtained.
Formula used: The standard equation for a line is $ax+by+c=0$.
The equation of a line that has a slope $m$ and passing through the point $({{x}_{1}},{{y}_{1}})$ is
$y-{{y}_{1}}=m(x-{{x}_{1}})$
The slope of a line $ax+by+c=0$ is $m=\dfrac{-a}{b}$
The slopes of two lines that are perpendicular lines are given by the condition,
${{m}_{1}}\times {{m}_{2}}=-1$
Complete step by step solution: Given line is $ax+by+c=0\text{ }...(1)$
The slope of line (1) is
${{m}_{1}}=\dfrac{-a}{b}$
Then, the slope of the line that is perpendicular to (1) is
$\begin{align}
& {{m}_{1}}\times {{m}_{2}}=-1 \\
& \Rightarrow {{m}_{2}}=\dfrac{-1}{{{m}_{1}}} \\
& \Rightarrow {{m}_{2}}=\dfrac{-1}{\dfrac{-a}{b}}=\dfrac{b}{a} \\
\end{align}$
Then, the equation with slope $m=\dfrac{b}{a}$ and passes through a point $({{x}_{1}},{{y}_{1}})=(a,b)$ is
$\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-b=\dfrac{b}{a}(x-a) \\
& \Rightarrow ay-ab=bx-ab \\
& \therefore bx-ay=0 \\
\end{align}$
Thus, Option (A) is correct.
Note: Here we need to remember that, the required line is perpendicular to the given line. Here we can also solve this by applying a direct equation i.e., $bx-ay+k=0$ where $k$ is a constant. By substituting the given point through the line passes, we get the $k$ value. Then, the required equation is obtained.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
