
The equation of the hyperbola referred to the axis as axes of co-ordinate and whose distance between the foci is $16$ and the eccentricity is $\sqrt{2}$.,is
A.\[{{x}^{2}}-{{y}^{2}}=16\]
B. \[{{x}^{2}}-{{y}^{2}}=32\]
C. \[{{x}^{2}}-2{{y}^{2}}=16\]
D. \[{{y}^{2}}-{{x}^{2}}=32\]
Answer
163.5k+ views
Hint: To solve this question we will use the general equation of hyperbola $\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1$ and formula of eccentricity and distance between the foci. Using formula of distance between the foci we will determine the value of $a$ and with the help of the formula of eccentricity we will determine the value of $b$. Then we will substitute the value of $a$ and $b$in the general equation of hyperbola and derive its equation.
Formula Used:Eccentricity of hyperbola: $e=\sqrt{1+\frac{{{b}^{2}}}{{{a}^{2}}}}$.
Distance between the foci: $2ae$.
Complete answer:We are given that the distance between the foci of hyperbola is $16$ and the eccentricity is $\sqrt{2}$ and we have to find the equation of this hyperbola.
We know that the distance between foci can be calculated with the help of formula $2ae$. So we will first determine the value of $a$ by substituting the give value of eccentricity and distance between foci in $2ae$.
$\begin{align}
& 2ae=16 \\
& 2a\times \sqrt{2}=16 \\
& a\sqrt{2}=8 \\
& a=4\sqrt{2}
\end{align}$
Now we will calculate the value of $b$ using the formula of eccentricity $e=\sqrt{1+\frac{{{b}^{2}}}{{{a}^{2}}}}$.
$\begin{align}
& \sqrt{2}=\sqrt{1+\frac{{{b}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}}} \\
& \sqrt{2}=\sqrt{1+\frac{{{b}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}}}
\end{align}$
On squaring both sides we will get,
$\begin{align}
& {{\left( \sqrt{2} \right)}^{2}}={{\left( \sqrt{1+\frac{{{b}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}}} \right)}^{2}} \\
& 2=1+\frac{{{b}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}} \\
& \frac{{{b}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}}=1 \\
& b=4\sqrt{2}
\end{align}$
As we know that the general equation of hyperbola is $\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1$, we will now substitute the value of $a$ and $b$.
$\begin{align}
& \frac{{{x}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}}-\frac{{{y}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}}=1 \\
& \frac{{{x}^{2}}}{32}-\frac{{{y}^{2}}}{32}=1 \\
& {{x}^{2}}-{{y}^{2}}=32
\end{align}$
The equation of hyperbola is ${{x}^{2}}-{{y}^{2}}$ when distance between the foci is $16$ and the eccentricity is $\sqrt{2}$.
Option ‘B’ is correct
Note: The eccentricity of a hyperbola defines how curved the conic is and for a hyperbola its value is always greater than one.
There are two focus of hyperbola and both lies on the axis and both are at equal distance from the center.
Formula Used:Eccentricity of hyperbola: $e=\sqrt{1+\frac{{{b}^{2}}}{{{a}^{2}}}}$.
Distance between the foci: $2ae$.
Complete answer:We are given that the distance between the foci of hyperbola is $16$ and the eccentricity is $\sqrt{2}$ and we have to find the equation of this hyperbola.
We know that the distance between foci can be calculated with the help of formula $2ae$. So we will first determine the value of $a$ by substituting the give value of eccentricity and distance between foci in $2ae$.
$\begin{align}
& 2ae=16 \\
& 2a\times \sqrt{2}=16 \\
& a\sqrt{2}=8 \\
& a=4\sqrt{2}
\end{align}$
Now we will calculate the value of $b$ using the formula of eccentricity $e=\sqrt{1+\frac{{{b}^{2}}}{{{a}^{2}}}}$.
$\begin{align}
& \sqrt{2}=\sqrt{1+\frac{{{b}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}}} \\
& \sqrt{2}=\sqrt{1+\frac{{{b}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}}}
\end{align}$
On squaring both sides we will get,
$\begin{align}
& {{\left( \sqrt{2} \right)}^{2}}={{\left( \sqrt{1+\frac{{{b}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}}} \right)}^{2}} \\
& 2=1+\frac{{{b}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}} \\
& \frac{{{b}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}}=1 \\
& b=4\sqrt{2}
\end{align}$
As we know that the general equation of hyperbola is $\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1$, we will now substitute the value of $a$ and $b$.
$\begin{align}
& \frac{{{x}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}}-\frac{{{y}^{2}}}{{{\left( 4\sqrt{2} \right)}^{2}}}=1 \\
& \frac{{{x}^{2}}}{32}-\frac{{{y}^{2}}}{32}=1 \\
& {{x}^{2}}-{{y}^{2}}=32
\end{align}$
The equation of hyperbola is ${{x}^{2}}-{{y}^{2}}$ when distance between the foci is $16$ and the eccentricity is $\sqrt{2}$.
Option ‘B’ is correct
Note: The eccentricity of a hyperbola defines how curved the conic is and for a hyperbola its value is always greater than one.
There are two focus of hyperbola and both lies on the axis and both are at equal distance from the center.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
