
The equation $\left| {z - i{\text{ }}} \right| + {\text{ }}\left| {z + i} \right|{\text{ }} = {\text{ }}k$ represents an ellipse if $k$ equals:
A. $1$
B. $2$
C. $4$
D. $-1$
Answer
232.8k+ views
Hint: The location of points in a plane whose sum of separations from two fixed points is a constant value is known as an ellipse. The conic section, which is the intersection of a cone with a plane that does not intersect the base of the cone, includes the ellipse.
To determine the value of $k$, we need to consider the complex number and then take the modulus of the equation of the question. Then square both sides of the equation.
Formula Used:
$(a+b)^2=a^2 + b^2 + 2ab$
$(a-b)^2=a^2 + b^2 - 2ab$
Complete step by step Solution:
In the question, the equation $\left| {z - i{\text{ }}} \right| + {\text{ }}\left| {z + i} \right|{\text{ }} = {\text{ }}k$ is given that represents an ellipse,
Consider $z = x + iy$, and substitute in the given equation, then:
$\left| {(x + iy) - i{\text{ }}} \right| + {\text{ }}\left| {(x + iy) + i} \right|{\text{ }} = {\text{ }}k$
As we know that a modulus function gives the magnitude of a number, so taking modulus in the above equation:
$\surd ({x^2} + {\left( {y - 1} \right)^2}) + {\text{ }}\surd ({x^2} + {\left( {y + 1} \right)^2}){\text{ }} = {\text{ }}k$
Subtract both sides of the above equation from $(\surd ({x^2} + {\left( {y + 1} \right)^2}))$,
$\surd ({x^2} + {\left( {y - 1} \right)^2}) + {\text{ }}\surd ({x^2} + {\left( {y + 1} \right)^2}) - \surd ({x^2} + {\left( {y + 1} \right)^2}){\text{ }} = {\text{ }}k - \surd ({x^2} + {\left( {y + 1} \right)^2}) \\$
$\surd ({x^2} + {\left( {y - 1} \right)^2}) = {\text{ }}k - \surd ({x^2} + {\left( {y + 1} \right)^2}) \\$
Squaring both sides of the equation, then:
${(\surd ({x^2} + {\left( {y - 1} \right)^2}))^2}{\text{ }} = {\text{ (}}k - \surd ({x^2} + {\left( {y + 1} \right)^2}){)^2}$
Use the algebraic identity to expand the above equation${(a - b)^2} = {a^2} + {b^2} - 2ab$,
${x^2} + {\left( {y - 1} \right)^2}\; = {\text{ }}{k^2} + {x^2} + {\left( {y + 1} \right)^2} - 2k\surd ({x^2} + {\left( {y + 1} \right)^2} \\$
$\Rightarrow 2k\surd ({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{k^2} + {\left( {y + 1} \right)^2} - {\left( {y - 1} \right)^2} \\$
$\Rightarrow 2k\surd ({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{k^2} + {y^2} + 2y + 1 - {y^2} + 2y - 1 \\$
$\Rightarrow 2k\surd ({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{k^2} + 4y \\$
Again, squaring both sides of the obtained equation:
$(2k\surd {({x^2} + {\left( {y + 1} \right)^2}\;)^2} = {\text{ (}}{k^2} + 4y{)^2}$
Use the algebraic identity to expand the above equation ${(a + b)^2} = {a^2} + {b^2} + 2ab$, then:
$4{k^2}({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{({k^2} + 4y)^2} \\$
$\Rightarrow 4{k^2}{x^2} + 4{k^2}{y^2} + 8{k^2}y + 4{k^2}\; = {\text{ }}{k^4} + 16{y^2} + 8{k^2}y \\$
$\Rightarrow 4{k^2}{x^2} + {y^2}(4{k^2} - 16) + 4{k^2} - {k^4}\; = {\text{ }}0 \\$$i$
As we notice that the obtained equation $4{k^2}{x^2} + {y^2}(4{k^2} - 16) + 4{k^2} - {k^4}\; = {\text{ }}0$ represents an ellipse if $4{k^2} - 16{\text{ }} > {\text{ }}0$, then we get:
$4{k^2}\; > 16 \\$
$\Rightarrow {k^2}\; > {\text{ }}\dfrac{{16}}{4} \\$
$\Rightarrow {k^2}\; > {\text{ }}4 \\$
$\Rightarrow \left| k \right|{\text{ }} > 2{\text{ }} \\$
Therefore, the value of $k$ is $4$.
Hence, the correct option is C.
Note: We must remember the complex number that will help to expand the equation. And when we do the problems related to complex numbers you should take care of signs while equating equations. $x$ and $y$ are real numbers and $i$ is a symbol showing imaginary parts. The symbol $i$ is generally called an imaginary unit. In this form of a complex number, $x$ is known as the real part of the equation and $y$ is the imaginary part of the solution.
To determine the value of $k$, we need to consider the complex number and then take the modulus of the equation of the question. Then square both sides of the equation.
Formula Used:
$(a+b)^2=a^2 + b^2 + 2ab$
$(a-b)^2=a^2 + b^2 - 2ab$
Complete step by step Solution:
In the question, the equation $\left| {z - i{\text{ }}} \right| + {\text{ }}\left| {z + i} \right|{\text{ }} = {\text{ }}k$ is given that represents an ellipse,
Consider $z = x + iy$, and substitute in the given equation, then:
$\left| {(x + iy) - i{\text{ }}} \right| + {\text{ }}\left| {(x + iy) + i} \right|{\text{ }} = {\text{ }}k$
As we know that a modulus function gives the magnitude of a number, so taking modulus in the above equation:
$\surd ({x^2} + {\left( {y - 1} \right)^2}) + {\text{ }}\surd ({x^2} + {\left( {y + 1} \right)^2}){\text{ }} = {\text{ }}k$
Subtract both sides of the above equation from $(\surd ({x^2} + {\left( {y + 1} \right)^2}))$,
$\surd ({x^2} + {\left( {y - 1} \right)^2}) + {\text{ }}\surd ({x^2} + {\left( {y + 1} \right)^2}) - \surd ({x^2} + {\left( {y + 1} \right)^2}){\text{ }} = {\text{ }}k - \surd ({x^2} + {\left( {y + 1} \right)^2}) \\$
$\surd ({x^2} + {\left( {y - 1} \right)^2}) = {\text{ }}k - \surd ({x^2} + {\left( {y + 1} \right)^2}) \\$
Squaring both sides of the equation, then:
${(\surd ({x^2} + {\left( {y - 1} \right)^2}))^2}{\text{ }} = {\text{ (}}k - \surd ({x^2} + {\left( {y + 1} \right)^2}){)^2}$
Use the algebraic identity to expand the above equation${(a - b)^2} = {a^2} + {b^2} - 2ab$,
${x^2} + {\left( {y - 1} \right)^2}\; = {\text{ }}{k^2} + {x^2} + {\left( {y + 1} \right)^2} - 2k\surd ({x^2} + {\left( {y + 1} \right)^2} \\$
$\Rightarrow 2k\surd ({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{k^2} + {\left( {y + 1} \right)^2} - {\left( {y - 1} \right)^2} \\$
$\Rightarrow 2k\surd ({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{k^2} + {y^2} + 2y + 1 - {y^2} + 2y - 1 \\$
$\Rightarrow 2k\surd ({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{k^2} + 4y \\$
Again, squaring both sides of the obtained equation:
$(2k\surd {({x^2} + {\left( {y + 1} \right)^2}\;)^2} = {\text{ (}}{k^2} + 4y{)^2}$
Use the algebraic identity to expand the above equation ${(a + b)^2} = {a^2} + {b^2} + 2ab$, then:
$4{k^2}({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{({k^2} + 4y)^2} \\$
$\Rightarrow 4{k^2}{x^2} + 4{k^2}{y^2} + 8{k^2}y + 4{k^2}\; = {\text{ }}{k^4} + 16{y^2} + 8{k^2}y \\$
$\Rightarrow 4{k^2}{x^2} + {y^2}(4{k^2} - 16) + 4{k^2} - {k^4}\; = {\text{ }}0 \\$$i$
As we notice that the obtained equation $4{k^2}{x^2} + {y^2}(4{k^2} - 16) + 4{k^2} - {k^4}\; = {\text{ }}0$ represents an ellipse if $4{k^2} - 16{\text{ }} > {\text{ }}0$, then we get:
$4{k^2}\; > 16 \\$
$\Rightarrow {k^2}\; > {\text{ }}\dfrac{{16}}{4} \\$
$\Rightarrow {k^2}\; > {\text{ }}4 \\$
$\Rightarrow \left| k \right|{\text{ }} > 2{\text{ }} \\$
Therefore, the value of $k$ is $4$.
Hence, the correct option is C.
Note: We must remember the complex number that will help to expand the equation. And when we do the problems related to complex numbers you should take care of signs while equating equations. $x$ and $y$ are real numbers and $i$ is a symbol showing imaginary parts. The symbol $i$ is generally called an imaginary unit. In this form of a complex number, $x$ is known as the real part of the equation and $y$ is the imaginary part of the solution.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Statistics Class 11 Maths Chapter 13 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

