
The equation $\left| {z - i{\text{ }}} \right| + {\text{ }}\left| {z + i} \right|{\text{ }} = {\text{ }}k$ represents an ellipse if $k$ equals:
A. $1$
B. $2$
C. $4$
D. $-1$
Answer
219k+ views
Hint: The location of points in a plane whose sum of separations from two fixed points is a constant value is known as an ellipse. The conic section, which is the intersection of a cone with a plane that does not intersect the base of the cone, includes the ellipse.
To determine the value of $k$, we need to consider the complex number and then take the modulus of the equation of the question. Then square both sides of the equation.
Formula Used:
$(a+b)^2=a^2 + b^2 + 2ab$
$(a-b)^2=a^2 + b^2 - 2ab$
Complete step by step Solution:
In the question, the equation $\left| {z - i{\text{ }}} \right| + {\text{ }}\left| {z + i} \right|{\text{ }} = {\text{ }}k$ is given that represents an ellipse,
Consider $z = x + iy$, and substitute in the given equation, then:
$\left| {(x + iy) - i{\text{ }}} \right| + {\text{ }}\left| {(x + iy) + i} \right|{\text{ }} = {\text{ }}k$
As we know that a modulus function gives the magnitude of a number, so taking modulus in the above equation:
$\surd ({x^2} + {\left( {y - 1} \right)^2}) + {\text{ }}\surd ({x^2} + {\left( {y + 1} \right)^2}){\text{ }} = {\text{ }}k$
Subtract both sides of the above equation from $(\surd ({x^2} + {\left( {y + 1} \right)^2}))$,
$\surd ({x^2} + {\left( {y - 1} \right)^2}) + {\text{ }}\surd ({x^2} + {\left( {y + 1} \right)^2}) - \surd ({x^2} + {\left( {y + 1} \right)^2}){\text{ }} = {\text{ }}k - \surd ({x^2} + {\left( {y + 1} \right)^2}) \\$
$\surd ({x^2} + {\left( {y - 1} \right)^2}) = {\text{ }}k - \surd ({x^2} + {\left( {y + 1} \right)^2}) \\$
Squaring both sides of the equation, then:
${(\surd ({x^2} + {\left( {y - 1} \right)^2}))^2}{\text{ }} = {\text{ (}}k - \surd ({x^2} + {\left( {y + 1} \right)^2}){)^2}$
Use the algebraic identity to expand the above equation${(a - b)^2} = {a^2} + {b^2} - 2ab$,
${x^2} + {\left( {y - 1} \right)^2}\; = {\text{ }}{k^2} + {x^2} + {\left( {y + 1} \right)^2} - 2k\surd ({x^2} + {\left( {y + 1} \right)^2} \\$
$\Rightarrow 2k\surd ({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{k^2} + {\left( {y + 1} \right)^2} - {\left( {y - 1} \right)^2} \\$
$\Rightarrow 2k\surd ({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{k^2} + {y^2} + 2y + 1 - {y^2} + 2y - 1 \\$
$\Rightarrow 2k\surd ({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{k^2} + 4y \\$
Again, squaring both sides of the obtained equation:
$(2k\surd {({x^2} + {\left( {y + 1} \right)^2}\;)^2} = {\text{ (}}{k^2} + 4y{)^2}$
Use the algebraic identity to expand the above equation ${(a + b)^2} = {a^2} + {b^2} + 2ab$, then:
$4{k^2}({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{({k^2} + 4y)^2} \\$
$\Rightarrow 4{k^2}{x^2} + 4{k^2}{y^2} + 8{k^2}y + 4{k^2}\; = {\text{ }}{k^4} + 16{y^2} + 8{k^2}y \\$
$\Rightarrow 4{k^2}{x^2} + {y^2}(4{k^2} - 16) + 4{k^2} - {k^4}\; = {\text{ }}0 \\$$i$
As we notice that the obtained equation $4{k^2}{x^2} + {y^2}(4{k^2} - 16) + 4{k^2} - {k^4}\; = {\text{ }}0$ represents an ellipse if $4{k^2} - 16{\text{ }} > {\text{ }}0$, then we get:
$4{k^2}\; > 16 \\$
$\Rightarrow {k^2}\; > {\text{ }}\dfrac{{16}}{4} \\$
$\Rightarrow {k^2}\; > {\text{ }}4 \\$
$\Rightarrow \left| k \right|{\text{ }} > 2{\text{ }} \\$
Therefore, the value of $k$ is $4$.
Hence, the correct option is C.
Note: We must remember the complex number that will help to expand the equation. And when we do the problems related to complex numbers you should take care of signs while equating equations. $x$ and $y$ are real numbers and $i$ is a symbol showing imaginary parts. The symbol $i$ is generally called an imaginary unit. In this form of a complex number, $x$ is known as the real part of the equation and $y$ is the imaginary part of the solution.
To determine the value of $k$, we need to consider the complex number and then take the modulus of the equation of the question. Then square both sides of the equation.
Formula Used:
$(a+b)^2=a^2 + b^2 + 2ab$
$(a-b)^2=a^2 + b^2 - 2ab$
Complete step by step Solution:
In the question, the equation $\left| {z - i{\text{ }}} \right| + {\text{ }}\left| {z + i} \right|{\text{ }} = {\text{ }}k$ is given that represents an ellipse,
Consider $z = x + iy$, and substitute in the given equation, then:
$\left| {(x + iy) - i{\text{ }}} \right| + {\text{ }}\left| {(x + iy) + i} \right|{\text{ }} = {\text{ }}k$
As we know that a modulus function gives the magnitude of a number, so taking modulus in the above equation:
$\surd ({x^2} + {\left( {y - 1} \right)^2}) + {\text{ }}\surd ({x^2} + {\left( {y + 1} \right)^2}){\text{ }} = {\text{ }}k$
Subtract both sides of the above equation from $(\surd ({x^2} + {\left( {y + 1} \right)^2}))$,
$\surd ({x^2} + {\left( {y - 1} \right)^2}) + {\text{ }}\surd ({x^2} + {\left( {y + 1} \right)^2}) - \surd ({x^2} + {\left( {y + 1} \right)^2}){\text{ }} = {\text{ }}k - \surd ({x^2} + {\left( {y + 1} \right)^2}) \\$
$\surd ({x^2} + {\left( {y - 1} \right)^2}) = {\text{ }}k - \surd ({x^2} + {\left( {y + 1} \right)^2}) \\$
Squaring both sides of the equation, then:
${(\surd ({x^2} + {\left( {y - 1} \right)^2}))^2}{\text{ }} = {\text{ (}}k - \surd ({x^2} + {\left( {y + 1} \right)^2}){)^2}$
Use the algebraic identity to expand the above equation${(a - b)^2} = {a^2} + {b^2} - 2ab$,
${x^2} + {\left( {y - 1} \right)^2}\; = {\text{ }}{k^2} + {x^2} + {\left( {y + 1} \right)^2} - 2k\surd ({x^2} + {\left( {y + 1} \right)^2} \\$
$\Rightarrow 2k\surd ({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{k^2} + {\left( {y + 1} \right)^2} - {\left( {y - 1} \right)^2} \\$
$\Rightarrow 2k\surd ({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{k^2} + {y^2} + 2y + 1 - {y^2} + 2y - 1 \\$
$\Rightarrow 2k\surd ({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{k^2} + 4y \\$
Again, squaring both sides of the obtained equation:
$(2k\surd {({x^2} + {\left( {y + 1} \right)^2}\;)^2} = {\text{ (}}{k^2} + 4y{)^2}$
Use the algebraic identity to expand the above equation ${(a + b)^2} = {a^2} + {b^2} + 2ab$, then:
$4{k^2}({x^2} + {\left( {y + 1} \right)^2}\; = {\text{ }}{({k^2} + 4y)^2} \\$
$\Rightarrow 4{k^2}{x^2} + 4{k^2}{y^2} + 8{k^2}y + 4{k^2}\; = {\text{ }}{k^4} + 16{y^2} + 8{k^2}y \\$
$\Rightarrow 4{k^2}{x^2} + {y^2}(4{k^2} - 16) + 4{k^2} - {k^4}\; = {\text{ }}0 \\$$i$
As we notice that the obtained equation $4{k^2}{x^2} + {y^2}(4{k^2} - 16) + 4{k^2} - {k^4}\; = {\text{ }}0$ represents an ellipse if $4{k^2} - 16{\text{ }} > {\text{ }}0$, then we get:
$4{k^2}\; > 16 \\$
$\Rightarrow {k^2}\; > {\text{ }}\dfrac{{16}}{4} \\$
$\Rightarrow {k^2}\; > {\text{ }}4 \\$
$\Rightarrow \left| k \right|{\text{ }} > 2{\text{ }} \\$
Therefore, the value of $k$ is $4$.
Hence, the correct option is C.
Note: We must remember the complex number that will help to expand the equation. And when we do the problems related to complex numbers you should take care of signs while equating equations. $x$ and $y$ are real numbers and $i$ is a symbol showing imaginary parts. The symbol $i$ is generally called an imaginary unit. In this form of a complex number, $x$ is known as the real part of the equation and $y$ is the imaginary part of the solution.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

