
The equation \[{\left( {x - 5} \right)^2} + \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\], represents
A. A circle
B. Two straight lines passing through the origin
C. Two straight lines passing through the point \[\left( {5,6} \right)\]
D. None of these
Answer
162.6k+ views
Hint: In this question, we have to figure out what the given equation means. For this, we need to simplify the given equation and after simplification, we will check the conditions for circle and straight line and for which this equation is satisfying .
Formula used: We will use the following algebraic formula for solving this example.
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
Complete step-by-step answer:
We know that \[{\left( {x - 5} \right)^2} + \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\]
Let us simplify the above equation.
Here, we will split the term \[\left( {x - 5} \right)\left( {y - 6} \right)\] as \[2\left( {x - 5} \right)\left( {y - 6} \right) - \left( {x - 5} \right)\left( {y - 6} \right)\]
Thus, we get
\[{\left( {x - 5} \right)^2} + 2\left( {x - 5} \right)\left( {y - 6} \right) - \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\]
By taking \[\left( {x - 5} \right)\] common from the first two terms and \[\left( {y - 6} \right)\] from the last two terms, we get
\[
\Rightarrow \left( {x - 5} \right)\left( {\left( {x - 5} \right) + 2\left( {y - 6} \right)} \right) - \left( {y - 6} \right)\left( {\left( {x - 5} \right) + 2\left( {y - 6} \right)} \right) = 0 \\
\Rightarrow \left( {x - 5 - \left( {y - 6} \right)} \right)\left( {\left( {x - 5} \right) + 2\left( {y - 6} \right)} \right) = 0 \\
\Rightarrow \left( {x - 5 - y + 6} \right)\left( {x - 5 + 2y - 12} \right) = 0 \\
\Rightarrow \left( {x - y + 1} \right)\left( {x + 2y - 17} \right) = 0 \\
\]
That means, \[\left( {x - y + 1} \right) = 0\] or \[\left( {x + 2y - 17} \right) = 0\]
These indicate equations of two straight lines as the standard equation of the straight line is \[y = mx + c\] where, \[m\] and \[c\] are constants.
Now, we will choose the correct option from the two remaining options.
Put \[\left( {a,b} \right) \equiv \left( {0,0} \right)\] in the given equation.
So, we get
\[
{\left( {0 - 5} \right)^2} + \left( {0 - 5} \right)\left( {0 - 6} \right) - 2{\left( {0 - 6} \right)^2} = 0 \\
\Rightarrow 25 + 30 - 72 = 0 \\
\Rightarrow - 17 \ne 0 \\
\]
That means it does not satisfy the given equation for the point \[\left( {0,0} \right)\].
Now, we will check for the point \[\left( {a,b} \right) \equiv \left( {5,6} \right)\]
Put \[\left( {a,b} \right) \equiv \left( {5,6} \right)\]in the given equation.
So, we get
\[
{\left( {5 - 5} \right)^2} + \left( {5 - 5} \right)\left( {6 - 6} \right) - 2{\left( {6 - 6} \right)^2} = 0 \\
\Rightarrow 0 = 0 \\
\]
That means the given equation satisfies the point \[\left( {5,6} \right)\].
Hence, the equation \[{\left( {x - 5} \right)^2} + \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\] represents two straight lines passing through the point \[\left( {5,6} \right)\]
Therefore, the correct option is (C).
Additional Information: A straight line equation can be expressed in a variety of ways, including point-slope form, slope-intercept form, general form, standard form, and so on. A straight line is a two-dimensional geometric element that goes indefinitely on both ends.
Note:
Many students make mistakes in the simplification part. Specifically in simplifying the given equation which is the multiplication of two brackets. They may confuse with signs so that they will not be able to determine whether the given equation is of the circle or straight lines.
Formula used: We will use the following algebraic formula for solving this example.
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
Complete step-by-step answer:
We know that \[{\left( {x - 5} \right)^2} + \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\]
Let us simplify the above equation.
Here, we will split the term \[\left( {x - 5} \right)\left( {y - 6} \right)\] as \[2\left( {x - 5} \right)\left( {y - 6} \right) - \left( {x - 5} \right)\left( {y - 6} \right)\]
Thus, we get
\[{\left( {x - 5} \right)^2} + 2\left( {x - 5} \right)\left( {y - 6} \right) - \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\]
By taking \[\left( {x - 5} \right)\] common from the first two terms and \[\left( {y - 6} \right)\] from the last two terms, we get
\[
\Rightarrow \left( {x - 5} \right)\left( {\left( {x - 5} \right) + 2\left( {y - 6} \right)} \right) - \left( {y - 6} \right)\left( {\left( {x - 5} \right) + 2\left( {y - 6} \right)} \right) = 0 \\
\Rightarrow \left( {x - 5 - \left( {y - 6} \right)} \right)\left( {\left( {x - 5} \right) + 2\left( {y - 6} \right)} \right) = 0 \\
\Rightarrow \left( {x - 5 - y + 6} \right)\left( {x - 5 + 2y - 12} \right) = 0 \\
\Rightarrow \left( {x - y + 1} \right)\left( {x + 2y - 17} \right) = 0 \\
\]
That means, \[\left( {x - y + 1} \right) = 0\] or \[\left( {x + 2y - 17} \right) = 0\]
These indicate equations of two straight lines as the standard equation of the straight line is \[y = mx + c\] where, \[m\] and \[c\] are constants.
Now, we will choose the correct option from the two remaining options.
Put \[\left( {a,b} \right) \equiv \left( {0,0} \right)\] in the given equation.
So, we get
\[
{\left( {0 - 5} \right)^2} + \left( {0 - 5} \right)\left( {0 - 6} \right) - 2{\left( {0 - 6} \right)^2} = 0 \\
\Rightarrow 25 + 30 - 72 = 0 \\
\Rightarrow - 17 \ne 0 \\
\]
That means it does not satisfy the given equation for the point \[\left( {0,0} \right)\].
Now, we will check for the point \[\left( {a,b} \right) \equiv \left( {5,6} \right)\]
Put \[\left( {a,b} \right) \equiv \left( {5,6} \right)\]in the given equation.
So, we get
\[
{\left( {5 - 5} \right)^2} + \left( {5 - 5} \right)\left( {6 - 6} \right) - 2{\left( {6 - 6} \right)^2} = 0 \\
\Rightarrow 0 = 0 \\
\]
That means the given equation satisfies the point \[\left( {5,6} \right)\].
Hence, the equation \[{\left( {x - 5} \right)^2} + \left( {x - 5} \right)\left( {y - 6} \right) - 2{\left( {y - 6} \right)^2} = 0\] represents two straight lines passing through the point \[\left( {5,6} \right)\]
Therefore, the correct option is (C).
Additional Information: A straight line equation can be expressed in a variety of ways, including point-slope form, slope-intercept form, general form, standard form, and so on. A straight line is a two-dimensional geometric element that goes indefinitely on both ends.
Note:
Many students make mistakes in the simplification part. Specifically in simplifying the given equation which is the multiplication of two brackets. They may confuse with signs so that they will not be able to determine whether the given equation is of the circle or straight lines.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
