
The emissivity of tungsten is approximately 0.35 A tungsten sphere 1 cm in radius is suspended within a large evacuated enclosure whose walls are at 300 K. What power input is required to maintain the sphere at a temperature of 3000 K? ( \[\sigma = 5.67 \times 10 - 8\] inSI unit)
A) 1020 W
B) 2020 W
C) 3020 W
D) 4020 W
Answer
180.6k+ views
Hint: Amount of heat radiated by tungsten will be equal to the amount of energy supplied. According to Stephan’s law the heat loss is given by, \[e\sigma A({T^2} - {T_0}^2)\] . Substitute the values of initial and final temperature, area, emissivity and the constant. Simplify to find the value power required.
Complete step-by-step solution
Energy is never produced or destroyed in this universe; there is always a transfer of energy from one form to another. Energy loss can be in the form of heat. In our case also, the amount of heat to be supplied per unit time to maintain the temperature of the sphere is the heat lost per unit time by that sphere.
Using Stephan’s law,
\[
Heat\,lost\,of\,radiation = e\sigma A({T^2} - {T_0}^2) \\
T = 3000k \\
{T_0} = 300k \\
A = 4\pi {r^2} = 4\pi \times {0.01^2} \\
Substituting, \\
P = 0.35 \times 5.67 \times {10^{ - 8}} \times 4\pi {(0.01)^2}[{3000^2} - {300^2}] \\
P = 2019.8W \\
\]
Therefore, the correct answer is option B.
Note: This equation is in terms of power or heat transferred per unit time. If you want to calculate the heat transferred in say 1 minute, then multiply the power value with 60s.According to Stephan's law the radiant energy emitted by a perfectly black body per unit area per second is directly proportional to the fourth power of its absolute temperature.
$E \propto {T^4} \Rightarrow E = \sigma {T^4}$
Complete step-by-step solution
Energy is never produced or destroyed in this universe; there is always a transfer of energy from one form to another. Energy loss can be in the form of heat. In our case also, the amount of heat to be supplied per unit time to maintain the temperature of the sphere is the heat lost per unit time by that sphere.
Using Stephan’s law,
\[
Heat\,lost\,of\,radiation = e\sigma A({T^2} - {T_0}^2) \\
T = 3000k \\
{T_0} = 300k \\
A = 4\pi {r^2} = 4\pi \times {0.01^2} \\
Substituting, \\
P = 0.35 \times 5.67 \times {10^{ - 8}} \times 4\pi {(0.01)^2}[{3000^2} - {300^2}] \\
P = 2019.8W \\
\]
Therefore, the correct answer is option B.
Note: This equation is in terms of power or heat transferred per unit time. If you want to calculate the heat transferred in say 1 minute, then multiply the power value with 60s.According to Stephan's law the radiant energy emitted by a perfectly black body per unit area per second is directly proportional to the fourth power of its absolute temperature.
$E \propto {T^4} \Rightarrow E = \sigma {T^4}$
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Mass and Weight

JEE Main 2023 April 13 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

Trending doubts
Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Degree of Dissociation and Its Formula With Solved Example for JEE

Current Loop as Magnetic Dipole and Its Derivation for JEE

Class 11 JEE Main Physics Mock Test 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Find the frictional force between the two blocks in class 11 physics JEE_MAIN

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 1 Physical World in Hindi - 2025-26

JEE Advanced 2026 Notes

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids - 2025-26

The system shown is just on the verge of slipping The class 11 physics JEE_Main

Important Days and Dates in August
