
The emissivity of tungsten is approximately 0.35 A tungsten sphere 1 cm in radius is suspended within a large evacuated enclosure whose walls are at 300 K. What power input is required to maintain the sphere at a temperature of 3000 K? ( \[\sigma = 5.67 \times 10 - 8\] inSI unit)
A) 1020 W
B) 2020 W
C) 3020 W
D) 4020 W
Answer
233.1k+ views
Hint: Amount of heat radiated by tungsten will be equal to the amount of energy supplied. According to Stephan’s law the heat loss is given by, \[e\sigma A({T^2} - {T_0}^2)\] . Substitute the values of initial and final temperature, area, emissivity and the constant. Simplify to find the value power required.
Complete step-by-step solution
Energy is never produced or destroyed in this universe; there is always a transfer of energy from one form to another. Energy loss can be in the form of heat. In our case also, the amount of heat to be supplied per unit time to maintain the temperature of the sphere is the heat lost per unit time by that sphere.
Using Stephan’s law,
\[
Heat\,lost\,of\,radiation = e\sigma A({T^2} - {T_0}^2) \\
T = 3000k \\
{T_0} = 300k \\
A = 4\pi {r^2} = 4\pi \times {0.01^2} \\
Substituting, \\
P = 0.35 \times 5.67 \times {10^{ - 8}} \times 4\pi {(0.01)^2}[{3000^2} - {300^2}] \\
P = 2019.8W \\
\]
Therefore, the correct answer is option B.
Note: This equation is in terms of power or heat transferred per unit time. If you want to calculate the heat transferred in say 1 minute, then multiply the power value with 60s.According to Stephan's law the radiant energy emitted by a perfectly black body per unit area per second is directly proportional to the fourth power of its absolute temperature.
$E \propto {T^4} \Rightarrow E = \sigma {T^4}$
Complete step-by-step solution
Energy is never produced or destroyed in this universe; there is always a transfer of energy from one form to another. Energy loss can be in the form of heat. In our case also, the amount of heat to be supplied per unit time to maintain the temperature of the sphere is the heat lost per unit time by that sphere.
Using Stephan’s law,
\[
Heat\,lost\,of\,radiation = e\sigma A({T^2} - {T_0}^2) \\
T = 3000k \\
{T_0} = 300k \\
A = 4\pi {r^2} = 4\pi \times {0.01^2} \\
Substituting, \\
P = 0.35 \times 5.67 \times {10^{ - 8}} \times 4\pi {(0.01)^2}[{3000^2} - {300^2}] \\
P = 2019.8W \\
\]
Therefore, the correct answer is option B.
Note: This equation is in terms of power or heat transferred per unit time. If you want to calculate the heat transferred in say 1 minute, then multiply the power value with 60s.According to Stephan's law the radiant energy emitted by a perfectly black body per unit area per second is directly proportional to the fourth power of its absolute temperature.
$E \propto {T^4} \Rightarrow E = \sigma {T^4}$
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

