
The electron in the beam of a television tube moves horizontally from south to north. The vertical component of the earth’s magnetic field points down. The electron is deflected towards
A.West
B.No deflection
C.East
D.North to south
Answer
152.1k+ views
Hint: When the electron beam of a television tube moves horizontally from south to north, then-current moves from the opposite direction of the flow of electrons that is current is moving from south to north. Then charged particles will be deflected in the opposite direction of the earth’s magnetic field.
Complete answer:
According to Fleming’s left hand-thumb rule, if we stretch our left hand and arrange the thumb, forefinger, and middle finger in such a way that they are mutually perpendicular to each other. In this way, if the forefinger points toward the direction of the magnetic field, the middle finger points toward the direction of flow of charged particles then the thumb points in the direction of magnetic force experienced by a positively charged particle.

As a result, negatively charged particles deflected in the opposite direction of the deflection of a positively charged particle.
Here the given phenomena can be explained by Fleming’s left-hand thumb rule.


The electron in the beam of the television tube moves horizontally from south ( ) to north ( ) and the vertical component of the earth’s magnetic field points down which means a vertical component of the magnetic field points toward the direction of the west ( ). According to Fleming’s rule, the electron experiences force toward the direction of the east ( ).
The negatively charged particle, an electron, is deflected in the direction of the east ( ).
Thus, option (C) is correct.
Note: Only a moving charged particle experiences a magnetic force in the presence of the magnetic field. For example protons, electrons, alpha particles, etc are charged particles and they are deflected but a neutron which is a neutral particle i.e zero charged does not deflect in the presence of the magnetic field.
Complete answer:
According to Fleming’s left hand-thumb rule, if we stretch our left hand and arrange the thumb, forefinger, and middle finger in such a way that they are mutually perpendicular to each other. In this way, if the forefinger points toward the direction of the magnetic field, the middle finger points toward the direction of flow of charged particles then the thumb points in the direction of magnetic force experienced by a positively charged particle.

As a result, negatively charged particles deflected in the opposite direction of the deflection of a positively charged particle.
Here the given phenomena can be explained by Fleming’s left-hand thumb rule.


The electron in the beam of the television tube moves horizontally from south (
The negatively charged particle, an electron, is deflected in the direction of the east (
Thus, option (C) is correct.
Note: Only a moving charged particle experiences a magnetic force in the presence of the magnetic field. For example protons, electrons, alpha particles, etc are charged particles and they are deflected but a neutron which is a neutral particle i.e zero charged does not deflect in the presence of the magnetic field.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
EMI starts from ₹3,487.34 per month
Recently Updated Pages
Difference Between Mass and Weight

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE
