The electric potential at a point in space due to charge $Q$ coulomb is $Q \times {10^{11}}V$. The value of electric field due to charge $Q$ at that point is equal to:
(A) $12\pi { \in _0}Q \times {10^{22}}V{m^{ - 1}}$
(B) $4\pi { \in _0}Q \times {10^{22}}V{m^{ - 1}}$
(C) $12\pi { \in _0}Q \times {10^{20}}V{m^{ - 1}}$
(D) $4\pi { \in _0}Q \times {10^{20}}V{m^{ - 1}}$
Answer
Verified
119.1k+ views
Hint Electric potential at a point in space is directly proportional to charge of source charge and inversely proportional to distance between source charge and that point. An electric field at a point is directly proportional to the charge of source charge and inversely proportional to square of distance between the source charge and that point. Use this relation between electric potential and electric field to find electric field using electric potential at that point.
Complete step by step solution
Electric potential at a point in space is directly proportional to charge of source charge and inversely proportional to distance between source charge and that point.
\[V = \dfrac{1}{{4\pi { \in _0}}}\dfrac{Q}{R}\] (1)
Where $R$ is distance between source charge $Q$ and the given point.
an electric field at a point is directly proportional to the charge of source charge and inversely proportional to square of distance between the source charge and that point.
$E = \dfrac{1}{{4\pi { \in _0}}}\dfrac{Q}{{{R^2}}}$ (2)
Combining equation (1) and (2), we have
$E = \dfrac{{4\pi { \in _0}{V^2}}}{Q}$
Substituting $V = Q \times {10^{11}}$ as given in question, we get
$E = \dfrac{{4\pi { \in _0}{{(Q \times {{10}^{11}})}^2}}}{Q} = 4\pi { \in _0}Q \times {10^{22}}V{m^{ - 1}}$
Hence, the correct answer is option B.
Note Electric field at a point in space due to charge $Q$ gives the value of force applied on unit positive charge placed at that point, where electric potential is potential energy of a unit positive charge at that point due to charge $Q$.
Complete step by step solution
Electric potential at a point in space is directly proportional to charge of source charge and inversely proportional to distance between source charge and that point.
\[V = \dfrac{1}{{4\pi { \in _0}}}\dfrac{Q}{R}\] (1)
Where $R$ is distance between source charge $Q$ and the given point.
an electric field at a point is directly proportional to the charge of source charge and inversely proportional to square of distance between the source charge and that point.
$E = \dfrac{1}{{4\pi { \in _0}}}\dfrac{Q}{{{R^2}}}$ (2)
Combining equation (1) and (2), we have
$E = \dfrac{{4\pi { \in _0}{V^2}}}{Q}$
Substituting $V = Q \times {10^{11}}$ as given in question, we get
$E = \dfrac{{4\pi { \in _0}{{(Q \times {{10}^{11}})}^2}}}{Q} = 4\pi { \in _0}Q \times {10^{22}}V{m^{ - 1}}$
Hence, the correct answer is option B.
Note Electric field at a point in space due to charge $Q$ gives the value of force applied on unit positive charge placed at that point, where electric potential is potential energy of a unit positive charge at that point due to charge $Q$.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics