
The efficiency of a Carnot engine operating between reservoirs maintained at ${27^ \circ }C$ and $ - {123^ \circ }C$ is
A. $0.75$
B. $0.4$
C. $0.25$
D. $0.5$
Answer
233.1k+ views
Hint:This problem is based on Carnot’s Engine Efficiency in a thermodynamic system, we know that all the parameters such as temperature, heat exchange, work done, etc., vary with the given conditions of the system and surroundings hence, use the scientific formula ${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$ to find the solution in the given problem.
Formula Used:
The efficiency of Carnot’s Heat Engine is given as: -
${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$
where ${T_L} = $Lower Absolute Temperature = Temperature of the Sink
and, ${T_H} = $Higher Absolute Temperature = Temperature of the source
Complete answer:
We know that the efficiency of Carnot’s Heat Engine is given as: -
${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$
where ${T_L} = $Lower Absolute Temperature = Temperature of the Sink
and, ${T_H} = $Higher Absolute Temperature = Temperature of the source
Carnot Engine is operating between reservoirs maintained at temperatures${T_H} = {27^ \circ }C = 300K$ and ${T_L} = - {123^ \circ }C = 150K$ (given) $\left( {^ \circ C + 273 = K} \right)$
The efficiency of the engine can be calculated as: -
$\eta = 1 - \dfrac{{{T_L}}}{{{T_H}}} = 1 - \dfrac{{150}}{{300}}$
$ \Rightarrow \eta = \dfrac{1}{2} = 0.5$
Thus, the efficiency of the given Carnot’s Engine is $0.5$.
Hence, the correct option is (D) $0.5$.
Thus, the correct option is D.
Note:Since this is a multiple-choice question (numerical-based), it is essential that given conditions are analyzed carefully to give an accurate solution. While writing an answer to this kind of numerical problem, always keep in mind to use the mathematical proven relations to find the solution.
Formula Used:
The efficiency of Carnot’s Heat Engine is given as: -
${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$
where ${T_L} = $Lower Absolute Temperature = Temperature of the Sink
and, ${T_H} = $Higher Absolute Temperature = Temperature of the source
Complete answer:
We know that the efficiency of Carnot’s Heat Engine is given as: -
${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$
where ${T_L} = $Lower Absolute Temperature = Temperature of the Sink
and, ${T_H} = $Higher Absolute Temperature = Temperature of the source
Carnot Engine is operating between reservoirs maintained at temperatures${T_H} = {27^ \circ }C = 300K$ and ${T_L} = - {123^ \circ }C = 150K$ (given) $\left( {^ \circ C + 273 = K} \right)$
The efficiency of the engine can be calculated as: -
$\eta = 1 - \dfrac{{{T_L}}}{{{T_H}}} = 1 - \dfrac{{150}}{{300}}$
$ \Rightarrow \eta = \dfrac{1}{2} = 0.5$
Thus, the efficiency of the given Carnot’s Engine is $0.5$.
Hence, the correct option is (D) $0.5$.
Thus, the correct option is D.
Note:Since this is a multiple-choice question (numerical-based), it is essential that given conditions are analyzed carefully to give an accurate solution. While writing an answer to this kind of numerical problem, always keep in mind to use the mathematical proven relations to find the solution.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Understanding Elastic Collisions in Two Dimensions

Class 11 JEE Main Physics Mock Test 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

Understanding Collisions: Types and Examples for Students

Define thermal expansion for alpha beta and gamma A class 11 physics JEE_Main

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

