
The dissociation constant for acetic acid and \[\text{ HCN }\] at $\text{ 2}{{\text{5}}^{\text{0}}}\text{C }$ are \[\text{ 1}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-5}}\text{ }\] and $\text{ 4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-10}}\text{ }$ respectively. The equilibrium constant for the following equilibrium would be:
$\text{C}{{\text{N}}^{-}}\text{ + C}{{\text{H}}_{\text{3}}}\text{COOH}\rightleftharpoons \text{HCN + C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{O}}^{-}}$
(A) $\text{ 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}$
(B)$\text{ 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{5}}$
(C) \[\text{ 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-5}}\]
(D)\[\text{ 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-4}}\]
Answer
222.3k+ views
Hint: The equilibrium constant (K) establishes the relation between the concentration of reactant and product .For a reversible reaction, in which the acid generates its conjugate base and base accepts the proton to form a conjugate acid, the equilibrium constant (K) is related to the dissociation constant of acid $\text{ }{{\text{K}}_{\text{a}}}$and the dissociation constant of the base $\text{ }{{\text{K}}_{\text{b}}}$ as:
$\text{ K = }{{\text{K}}_{\text{a}}}\text{ }\!\!\times\!\!\text{ }{{\text{K}}_{\text{b}}}$
Complete step by step solution:
We need to consider the following equations for the equilibrium constants.
Here they are:
The dissociation of acetic acid into acetate ion and hydrogen ion is as follows:
\[\text{ C}{{\text{H}}_{\text{3}}}\text{COOH }\rightleftharpoons \text{ C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{O}}^{-}}\text{ + }{{\text{H}}^{+}}\] (1)
Let’s the dissociation constant for the acetic acid be $\text{ }{{\text{K}}_{\text{1}}}\text{ }$.We have given the value of $\text{ }{{\text{K}}_{\text{1}}}\text{ }$ which is ,
$\text{ }{{\text{K}}_{\text{1}}}=\text{ 1}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-5}}$
Now let us move to the equation of HCN. So here it is:
$\text{HCN }\rightleftharpoons {{\text{H}}^{+}}\text{ + C}{{\text{N}}^{-}}$ (2)
The \[\text{ HCN }\]dissociates into the hydrogen ion and cyanide ion.
In this case, the $\text{ }{{\text{K}}_{\text{2}}}$ represents the value of the dissociation constant of HCN. The value of the dissociation constant of \[\text{ HCN }\] is given as,
$\text{ }{{\text{K}}_{\text{2}}}\text{ = 4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-10}}$
Now on reversing the reaction of dissociation of \[\text{ HCN }\].We get the following equation,
$\text{ }{{\text{H}}^{+}}\text{ + C}{{\text{N}}^{-}}\text{ }\rightleftharpoons \text{HCN }$
Let us name this equation as equation 3. In this case, the $\text{ }{{\text{K}}_{\text{3}}}$ represents the dissociation constant. The value of $\text{ }{{\text{K}}_{\text{3}}}$ can also is written as $\text{ }\dfrac{\text{1}}{{{\text{K}}_{\text{2}}}}$ .
Therefore, we can say that the value of $\text{ }{{\text{K}}_{\text{3}}}\text{ }$is
$\text{ }{{\text{K}}_{\text{3}}}\text{=}\dfrac{\text{1}}{{{\text{K}}_{\text{2}}}}=\dfrac{1}{4.5\times {{10}^{-10}}}$
Now among the above equations that we have got, we have to add equation 1 and equation 2, to get the value of K, which is the equilibrium constant.
So adding the equation 1 and equation 3 we get the following equation:
\[\begin{align}
& \text{ C}{{\text{H}}_{\text{3}}}\text{COOH }\rightleftharpoons \text{ C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{O}}^{-}}\text{ + }{{\text{H}}^{+}} \\
& + \\
& \text{ }{{\text{H}}^{+}}\text{ + C}{{\text{N}}^{-}}\text{ }\rightleftharpoons \text{HCN} \\
& \overline{\text{C}{{\text{H}}_{\text{3}}}\text{COOH + C}{{\text{N}}^{-}}\text{ }\rightleftharpoons \text{C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{O}}^{-}}\text{+ HCN }} \\
\end{align}\]
Now finding the value of K or the equilibrium constant.
The equilibrium constant K is equal to the product of the dissociation constant of acetic acid and hydrogen cyanide.
$\text{K = }{{\text{K}}_{\text{1}}}\text{ }\!\!\times\!\!\text{ }{{\text{K}}_{\text{3}}}\text{ = 1}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-5}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-10}}}\text{ = 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}$
Therefore, we can say that the value of the equilibrium constant is $\text{ 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ }$.
Hence, (A) is the correct option.
Note: We should know that the equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium. Chemical equilibrium is a state which is approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change.
$\text{ K = }{{\text{K}}_{\text{a}}}\text{ }\!\!\times\!\!\text{ }{{\text{K}}_{\text{b}}}$
Complete step by step solution:
We need to consider the following equations for the equilibrium constants.
Here they are:
The dissociation of acetic acid into acetate ion and hydrogen ion is as follows:
\[\text{ C}{{\text{H}}_{\text{3}}}\text{COOH }\rightleftharpoons \text{ C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{O}}^{-}}\text{ + }{{\text{H}}^{+}}\] (1)
Let’s the dissociation constant for the acetic acid be $\text{ }{{\text{K}}_{\text{1}}}\text{ }$.We have given the value of $\text{ }{{\text{K}}_{\text{1}}}\text{ }$ which is ,
$\text{ }{{\text{K}}_{\text{1}}}=\text{ 1}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-5}}$
Now let us move to the equation of HCN. So here it is:
$\text{HCN }\rightleftharpoons {{\text{H}}^{+}}\text{ + C}{{\text{N}}^{-}}$ (2)
The \[\text{ HCN }\]dissociates into the hydrogen ion and cyanide ion.
In this case, the $\text{ }{{\text{K}}_{\text{2}}}$ represents the value of the dissociation constant of HCN. The value of the dissociation constant of \[\text{ HCN }\] is given as,
$\text{ }{{\text{K}}_{\text{2}}}\text{ = 4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-10}}$
Now on reversing the reaction of dissociation of \[\text{ HCN }\].We get the following equation,
$\text{ }{{\text{H}}^{+}}\text{ + C}{{\text{N}}^{-}}\text{ }\rightleftharpoons \text{HCN }$
Let us name this equation as equation 3. In this case, the $\text{ }{{\text{K}}_{\text{3}}}$ represents the dissociation constant. The value of $\text{ }{{\text{K}}_{\text{3}}}$ can also is written as $\text{ }\dfrac{\text{1}}{{{\text{K}}_{\text{2}}}}$ .
Therefore, we can say that the value of $\text{ }{{\text{K}}_{\text{3}}}\text{ }$is
$\text{ }{{\text{K}}_{\text{3}}}\text{=}\dfrac{\text{1}}{{{\text{K}}_{\text{2}}}}=\dfrac{1}{4.5\times {{10}^{-10}}}$
Now among the above equations that we have got, we have to add equation 1 and equation 2, to get the value of K, which is the equilibrium constant.
So adding the equation 1 and equation 3 we get the following equation:
\[\begin{align}
& \text{ C}{{\text{H}}_{\text{3}}}\text{COOH }\rightleftharpoons \text{ C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{O}}^{-}}\text{ + }{{\text{H}}^{+}} \\
& + \\
& \text{ }{{\text{H}}^{+}}\text{ + C}{{\text{N}}^{-}}\text{ }\rightleftharpoons \text{HCN} \\
& \overline{\text{C}{{\text{H}}_{\text{3}}}\text{COOH + C}{{\text{N}}^{-}}\text{ }\rightleftharpoons \text{C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{O}}^{-}}\text{+ HCN }} \\
\end{align}\]
Now finding the value of K or the equilibrium constant.
The equilibrium constant K is equal to the product of the dissociation constant of acetic acid and hydrogen cyanide.
$\text{K = }{{\text{K}}_{\text{1}}}\text{ }\!\!\times\!\!\text{ }{{\text{K}}_{\text{3}}}\text{ = 1}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-5}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-10}}}\text{ = 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}$
Therefore, we can say that the value of the equilibrium constant is $\text{ 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ }$.
Hence, (A) is the correct option.
Note: We should know that the equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium. Chemical equilibrium is a state which is approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

