
The differential equation of displacement of all "Simple harmonic motions" of given period \[\frac{{2\pi }}{{\rm{n}}}\], is
A) \[\frac{{{d^2}x}}{{d{t^2}}} + nx = 0\]
B) \[\frac{{{d^2}x}}{{d{t^2}}} + {n^2}x = 0\]
C) \[\frac{{{d^2}x}}{{d{t^2}}} - {n^2}x = 0\]
D) \[\frac{{{d^2}x}}{{d{t^2}}} + \frac{1}{{{n^2}}}x = 0\]
Answer
162.9k+ views
Hints:
In order to simplify the above expression, use the SHM standard differential equation. Find the oscillation frequency by comparing the two, and then utilize the relationship between frequency and time period to determine the time period.
Formula use:
\[y = {x^n}\]
Differentiate with respect to x
\[\frac{{dy}}{{dx}} = n{x^{n-1}}\]
\[y = \cos (x)\]
Differentiate with respect to x
\[\frac{{dy}}{{dx}} = -\sin (x)\]
Complete step-by-step solution:
We have been given the differential equation of displacement of all "Simple harmonic motions" of given period as \[\frac{{2\pi }}{{\rm{n}}}\]
We have been given the displacement\[x\]for all SHM as
\[x = a\cos (nt + b)\]-- (1)
Differentiation is linear. We can differentiate summands separately and pull out constant factors.
Let’s solve the above equation (1) by first order differentiation with respect to t:\[ \Rightarrow \frac{{dx}}{{dt}} = - na\sin (nt + b)\]-- (2)
Apply the differentiation rule:
Solve the equation (2) by second order differentiation with respect to t:
\[ \Rightarrow \frac{{{d^2}x}}{{d{t^2}}} = - {n^2}a\cos (nt + b)\]
According to the equation (1), replace the value \[a\cos (nt + b)\] as \[x\]:
Since, \[x = a\cos (nt + b)\]
\[ \Rightarrow \frac{{{d^2}x}}{{d{t^2}}} = - {n^2}x\]
Let’s restructure the equation by explicitly having all the terms on one side:
\[ \Rightarrow \frac{{{d^2}x}}{{d{t^2}}} + {n^2}x = 0\]
Therefore, the differential equation of displacement of all "Simple harmonic motions" of given period \[\frac{{2\pi }}{{\rm{n}}}\], is \[\frac{{{d^2}x}}{{d{t^2}}} + {n^2}x = 0\]
Hence, the option B is correct.
Note:
Students often make mistakes in finding differential equation for simple harmonic motions. Because, it involves trigonometry functions and differentiation functions. The solutions of differential equations of simple harmonic motions are verified by substituting the x values in the above differential equation for the linear simple harmonic motion. We have to differentiate the functions carefully to get the required solution.
In order to simplify the above expression, use the SHM standard differential equation. Find the oscillation frequency by comparing the two, and then utilize the relationship between frequency and time period to determine the time period.
Formula use:
\[y = {x^n}\]
Differentiate with respect to x
\[\frac{{dy}}{{dx}} = n{x^{n-1}}\]
\[y = \cos (x)\]
Differentiate with respect to x
\[\frac{{dy}}{{dx}} = -\sin (x)\]
Complete step-by-step solution:
We have been given the differential equation of displacement of all "Simple harmonic motions" of given period as \[\frac{{2\pi }}{{\rm{n}}}\]
We have been given the displacement\[x\]for all SHM as
\[x = a\cos (nt + b)\]-- (1)
Differentiation is linear. We can differentiate summands separately and pull out constant factors.
Let’s solve the above equation (1) by first order differentiation with respect to t:\[ \Rightarrow \frac{{dx}}{{dt}} = - na\sin (nt + b)\]-- (2)
Apply the differentiation rule:
Solve the equation (2) by second order differentiation with respect to t:
\[ \Rightarrow \frac{{{d^2}x}}{{d{t^2}}} = - {n^2}a\cos (nt + b)\]
According to the equation (1), replace the value \[a\cos (nt + b)\] as \[x\]:
Since, \[x = a\cos (nt + b)\]
\[ \Rightarrow \frac{{{d^2}x}}{{d{t^2}}} = - {n^2}x\]
Let’s restructure the equation by explicitly having all the terms on one side:
\[ \Rightarrow \frac{{{d^2}x}}{{d{t^2}}} + {n^2}x = 0\]
Therefore, the differential equation of displacement of all "Simple harmonic motions" of given period \[\frac{{2\pi }}{{\rm{n}}}\], is \[\frac{{{d^2}x}}{{d{t^2}}} + {n^2}x = 0\]
Hence, the option B is correct.
Note:
Students often make mistakes in finding differential equation for simple harmonic motions. Because, it involves trigonometry functions and differentiation functions. The solutions of differential equations of simple harmonic motions are verified by substituting the x values in the above differential equation for the linear simple harmonic motion. We have to differentiate the functions carefully to get the required solution.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
