
The differential coefficient \[{\tan ^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right)\] with respect to the \[{\sin ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right)\]
A) 1
B) -1
C) 0
D) None of these
Answer
219k+ views
Hint: This question is done using the concept, that is, the substitution of the variables. Variables are substituted by another variable which will help to simplify the given expression.
Formula Used:
1) \[\begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\tan 2\theta }& = &{\frac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}}
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\sin 2\theta }& = &{\frac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
4) \[\begin{array}{*{20}{c}}
{\frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}& = &{\frac{1}{{1 + {x^2}}}}
\end{array}\]
Complete step by step Solution:
Whenever differentiation of any expression has to be found with respect to another expression, there is used a formula that is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
Let us assume that y and z are two expressions respectively which is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\tan }^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right)}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{2{{\tan }^{ - 1}}x}
\end{array}\]
Before moving forward, simplify these expressions. For this purpose, substitute x with another variable. Therefore, we can write.
\[\begin{array}{*{20}{c}}
{ \Rightarrow x}& = &{\tan \theta }
\end{array}\]
And
\[\begin{array}{*{20}{c}}
{ \Rightarrow \theta }& = &{{{\tan }^{ - 1}}x}
\end{array}\]
Now, put the value of x in the above expressions. We will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\tan }^{ - 1}}\left( {\frac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\sin }^{ - 1}}\left( {\frac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}} \right)}
\end{array}\]
Some trigonometric formulas will now be used to reduce the above expression. So we know that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \tan 2\theta }& = &{\frac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}}
\end{array}\]and \[\begin{array}{*{20}{c}}
{\sin 2\theta }& = &{\frac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
Therefore, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\tan }^{ - 1}}\tan 2\theta }
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\sin }^{ - 1}}\sin 2\theta }
\end{array}\]
And then,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{2\theta }
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{2\theta }
\end{array}\]
Now again substitute the value of the \[\theta \]. Therefore, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{2{{\tan }^{ - 1}}x}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{2{{\tan }^{ - 1}}x}
\end{array}\]
Now differentiate both the expressions with respect to the x. So, we will get it.
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dx}}}& = &{2\frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}
\end{array}\]
Now we know that the differentiation of the \[{\tan ^{ - 1}}x\] is,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}& = &{\frac{1}{{1 + {x^2}}}}
\end{array}\]
Therefore, from the above expression, we will get.
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dx}}}& = &{\frac{2}{{1 + {x^2}}}}
\end{array}\]…………….. (a)
And now differentiate the expression z with respect to the x. So, we can write.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dz}}{{dx}}}& = &{\frac{2}{{1 + {x^2}}}}
\end{array}\] ………. (b)
According to the question, we will have to find the derivative of one expression with respect to another expression so that we will apply,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dx}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
Now from the equation (a) and (b), we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &{\frac{{\frac{2}{{1 + {x^2}}}}}{{\frac{2}{{1 + {x^2}}}}}}
\end{array}\]
Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &1
\end{array}\]
Now the final answer is 1.
Hence, the correct option is (A).
Note: Use all the basic fundamentals of trigonometry and differentiation to reach the final answer. First, simplify both expressions by substituting the variables and then differentiate both expressions with respect to the x.
Formula Used:
1) \[\begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\tan 2\theta }& = &{\frac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}}
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\sin 2\theta }& = &{\frac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
4) \[\begin{array}{*{20}{c}}
{\frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}& = &{\frac{1}{{1 + {x^2}}}}
\end{array}\]
Complete step by step Solution:
Whenever differentiation of any expression has to be found with respect to another expression, there is used a formula that is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
Let us assume that y and z are two expressions respectively which is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\tan }^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right)}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{2{{\tan }^{ - 1}}x}
\end{array}\]
Before moving forward, simplify these expressions. For this purpose, substitute x with another variable. Therefore, we can write.
\[\begin{array}{*{20}{c}}
{ \Rightarrow x}& = &{\tan \theta }
\end{array}\]
And
\[\begin{array}{*{20}{c}}
{ \Rightarrow \theta }& = &{{{\tan }^{ - 1}}x}
\end{array}\]
Now, put the value of x in the above expressions. We will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\tan }^{ - 1}}\left( {\frac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\sin }^{ - 1}}\left( {\frac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}} \right)}
\end{array}\]
Some trigonometric formulas will now be used to reduce the above expression. So we know that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \tan 2\theta }& = &{\frac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}}
\end{array}\]and \[\begin{array}{*{20}{c}}
{\sin 2\theta }& = &{\frac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
Therefore, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\tan }^{ - 1}}\tan 2\theta }
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\sin }^{ - 1}}\sin 2\theta }
\end{array}\]
And then,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{2\theta }
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{2\theta }
\end{array}\]
Now again substitute the value of the \[\theta \]. Therefore, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{2{{\tan }^{ - 1}}x}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{2{{\tan }^{ - 1}}x}
\end{array}\]
Now differentiate both the expressions with respect to the x. So, we will get it.
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dx}}}& = &{2\frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}
\end{array}\]
Now we know that the differentiation of the \[{\tan ^{ - 1}}x\] is,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}& = &{\frac{1}{{1 + {x^2}}}}
\end{array}\]
Therefore, from the above expression, we will get.
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dx}}}& = &{\frac{2}{{1 + {x^2}}}}
\end{array}\]…………….. (a)
And now differentiate the expression z with respect to the x. So, we can write.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dz}}{{dx}}}& = &{\frac{2}{{1 + {x^2}}}}
\end{array}\] ………. (b)
According to the question, we will have to find the derivative of one expression with respect to another expression so that we will apply,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dx}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
Now from the equation (a) and (b), we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &{\frac{{\frac{2}{{1 + {x^2}}}}}{{\frac{2}{{1 + {x^2}}}}}}
\end{array}\]
Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &1
\end{array}\]
Now the final answer is 1.
Hence, the correct option is (A).
Note: Use all the basic fundamentals of trigonometry and differentiation to reach the final answer. First, simplify both expressions by substituting the variables and then differentiate both expressions with respect to the x.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

