
The derivative of \[f\left( x \right) = x\left| x \right|\] is
A. \[2x\]
B. \[ - 2x\]
C. \[2{x^2}\]
D. \[2\left| x \right|\]
Answer
232.8k+ views
Hint: We know that the derivative of a function \[f\left( x \right)\] is the function whose value at \[x\] is \[f'\left( x \right)\]. So, we take the derivative of the given function with the help of the modulus function formula which gives a positive value when the function is greater than or equal to zero and a negative value when the function is lower than zero.
Formula Used:
The modulus function formula is
\[\begin{array}{c}f\left( x \right) = \left| x \right|\\ = \left\{ \begin{array}{l}x,if\,x \ge 0\\ - x,if\,x < 0\end{array} \right.\end{array}\]
Complete step-by-step solution:
We are given that \[f\left( x \right) = x\left| x \right|\]
Now apply the modulus function formula, we get
\[\begin{array}{c}f\left( x \right) = x\left| x \right|\\ = \left\{ \begin{array}{l}x \cdot x = {x^2},if\,x \ge 0\\x \cdot \left( { - x} \right) = - {x^2},if\,x < 0\end{array} \right.\end{array}\]
Now we take the derivative of the function, and we get
\[f^{'}\left( x \right) = \left\{ \begin{array}{l}2x,x \ge 0\\ - 2x,x < 0\end{array} \right.\]
Therefore, \[f^{'}\left( x \right) = 2\left| x \right|\]
So, option (4) is correct
Hence, the derivative of the function \[f\left( x \right) = x\left| x \right|\] is \[2\left| x \right|\].
Additional information: In mathematics, the modulus of a real number \[x\]is given by the modulus function, denoted by \[\left| x \right|\]. It gives the non-negative value of \[x\]. The modulus or absolute value of a number is also considered as the distance of the number from the origin or zero. In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument. Derivatives are a fundamental tool of calculus.
Formula Used:
The modulus function formula is
\[\begin{array}{c}f\left( x \right) = \left| x \right|\\ = \left\{ \begin{array}{l}x,if\,x \ge 0\\ - x,if\,x < 0\end{array} \right.\end{array}\]
Complete step-by-step solution:
We are given that \[f\left( x \right) = x\left| x \right|\]
Now apply the modulus function formula, we get
\[\begin{array}{c}f\left( x \right) = x\left| x \right|\\ = \left\{ \begin{array}{l}x \cdot x = {x^2},if\,x \ge 0\\x \cdot \left( { - x} \right) = - {x^2},if\,x < 0\end{array} \right.\end{array}\]
Now we take the derivative of the function, and we get
\[f^{'}\left( x \right) = \left\{ \begin{array}{l}2x,x \ge 0\\ - 2x,x < 0\end{array} \right.\]
Therefore, \[f^{'}\left( x \right) = 2\left| x \right|\]
So, option (4) is correct
Hence, the derivative of the function \[f\left( x \right) = x\left| x \right|\] is \[2\left| x \right|\].
Additional information: In mathematics, the modulus of a real number \[x\]is given by the modulus function, denoted by \[\left| x \right|\]. It gives the non-negative value of \[x\]. The modulus or absolute value of a number is also considered as the distance of the number from the origin or zero. In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument. Derivatives are a fundamental tool of calculus.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

