Answer
Verified
80.4k+ views
Hint: As per the given question the conditions are ideal then we will use ideal gas equation in order to bring out the temperature at the centre of the sun;
Equation of ideal gas is given as;
$PV = \mu RT$ (P is the pressure, V is the volume, R is the gas constant and T is the temperature)
$\mu $ is $\dfrac{m}{M}$, M is the average molecular weight of the sun, m is the mass of gases.
Complete step by step solution:
Let’s discuss in more detail about the ideal gas equation.
We have three gas laws: Boyle’s law (law of constant temperature) Charles’ law (law of constant volume) and Gay Lussa’s law (law of constant pressure), when the simultaneous change in volume, pressure and temperature takes place gas equation is formed stated below:
$PV = \mu RT$
In which R is the gas constant having a constant value $0.0831 L atm Mol^{-1}K^{-1}$.
The gas which obeys all the gas laws is called an ideal gas.
Now we will come to the calculation part of the question:
$ \Rightarrow PV = \mu RT$.....................(1)
We can write $\mu $ as $\dfrac{m}{M}$
Where, m=$\rho V$ therefore we can write $\mu $as $\dfrac{{\rho V}}{M}$
Substituting the value of $\mu $ in equation 1
$ \Rightarrow PV = \dfrac{{\rho V}}{M}RT$
On cancelling V on LHS and RHS
$ \Rightarrow P = \dfrac{\rho }{M}RT$ ............(2)
From equation 2 we will arrange the terms to get the value of T
$
\Rightarrow \dfrac{{PM}}{{\rho R}} = T \\
\Rightarrow T = \dfrac{{PM}}{{\rho R}} \\
$.........................(3)
In equation 3 we will substitute all the numerical values.
$
\Rightarrow T = \dfrac{{1.12 \times {{10}^9} \times 2}}{{2.73 \times {{10}^3} \times 0.0831}} \\
\Rightarrow T = \dfrac{{2.24 \times {{10}^9}}}{{22.43 \times {{10}^3}}} \\
$ (Simple multiplication is done)
$ \Rightarrow T = 9.98 \times {10^6}$
We assume 9.98 as 10 therefore our solution will become; $T=10^7 K.$
Option (C) is correct.
Note: Ideal gas equation has many relations embedded in it, which has different applications like density of gas is directly proportional to the pressure and molecular mass and inversely proportional to the temperature, this relation is used for extinguishing fire by spreading $CO_2$ carbon dioxide over the fire because density of $CO_2$ is more than oxygen and thus carbon dioxide acts as blanket over the fire in order to reduce the presence the oxygen (because burning needs oxygen).
Equation of ideal gas is given as;
$PV = \mu RT$ (P is the pressure, V is the volume, R is the gas constant and T is the temperature)
$\mu $ is $\dfrac{m}{M}$, M is the average molecular weight of the sun, m is the mass of gases.
Complete step by step solution:
Let’s discuss in more detail about the ideal gas equation.
We have three gas laws: Boyle’s law (law of constant temperature) Charles’ law (law of constant volume) and Gay Lussa’s law (law of constant pressure), when the simultaneous change in volume, pressure and temperature takes place gas equation is formed stated below:
$PV = \mu RT$
In which R is the gas constant having a constant value $0.0831 L atm Mol^{-1}K^{-1}$.
The gas which obeys all the gas laws is called an ideal gas.
Now we will come to the calculation part of the question:
$ \Rightarrow PV = \mu RT$.....................(1)
We can write $\mu $ as $\dfrac{m}{M}$
Where, m=$\rho V$ therefore we can write $\mu $as $\dfrac{{\rho V}}{M}$
Substituting the value of $\mu $ in equation 1
$ \Rightarrow PV = \dfrac{{\rho V}}{M}RT$
On cancelling V on LHS and RHS
$ \Rightarrow P = \dfrac{\rho }{M}RT$ ............(2)
From equation 2 we will arrange the terms to get the value of T
$
\Rightarrow \dfrac{{PM}}{{\rho R}} = T \\
\Rightarrow T = \dfrac{{PM}}{{\rho R}} \\
$.........................(3)
In equation 3 we will substitute all the numerical values.
$
\Rightarrow T = \dfrac{{1.12 \times {{10}^9} \times 2}}{{2.73 \times {{10}^3} \times 0.0831}} \\
\Rightarrow T = \dfrac{{2.24 \times {{10}^9}}}{{22.43 \times {{10}^3}}} \\
$ (Simple multiplication is done)
$ \Rightarrow T = 9.98 \times {10^6}$
We assume 9.98 as 10 therefore our solution will become; $T=10^7 K.$
Option (C) is correct.
Note: Ideal gas equation has many relations embedded in it, which has different applications like density of gas is directly proportional to the pressure and molecular mass and inversely proportional to the temperature, this relation is used for extinguishing fire by spreading $CO_2$ carbon dioxide over the fire because density of $CO_2$ is more than oxygen and thus carbon dioxide acts as blanket over the fire in order to reduce the presence the oxygen (because burning needs oxygen).
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main