
The centre of the sun consists of gases, whose average molecular weight is 2. If the density of the gases is $2.73 \times {10^3}kg/{m^3}$, at a pressure of $1.12 \times {10^9}$atm, the temperature at the centre of the sun is? (Assuming ideal behaviour of gases)
A) $10^8 K$
B) $10^6 °C$
C) $10^7 K$
D) $10^9 K$
Answer
141.9k+ views
Hint: As per the given question the conditions are ideal then we will use ideal gas equation in order to bring out the temperature at the centre of the sun;
Equation of ideal gas is given as;
$PV = \mu RT$ (P is the pressure, V is the volume, R is the gas constant and T is the temperature)
$\mu $ is $\dfrac{m}{M}$, M is the average molecular weight of the sun, m is the mass of gases.
Complete step by step solution:
Let’s discuss in more detail about the ideal gas equation.
We have three gas laws: Boyle’s law (law of constant temperature) Charles’ law (law of constant volume) and Gay Lussa’s law (law of constant pressure), when the simultaneous change in volume, pressure and temperature takes place gas equation is formed stated below:
$PV = \mu RT$
In which R is the gas constant having a constant value $0.0831 L atm Mol^{-1}K^{-1}$.
The gas which obeys all the gas laws is called an ideal gas.
Now we will come to the calculation part of the question:
$ \Rightarrow PV = \mu RT$.....................(1)
We can write $\mu $ as $\dfrac{m}{M}$
Where, m=$\rho V$ therefore we can write $\mu $as $\dfrac{{\rho V}}{M}$
Substituting the value of $\mu $ in equation 1
$ \Rightarrow PV = \dfrac{{\rho V}}{M}RT$
On cancelling V on LHS and RHS
$ \Rightarrow P = \dfrac{\rho }{M}RT$ ............(2)
From equation 2 we will arrange the terms to get the value of T
$
\Rightarrow \dfrac{{PM}}{{\rho R}} = T \\
\Rightarrow T = \dfrac{{PM}}{{\rho R}} \\
$.........................(3)
In equation 3 we will substitute all the numerical values.
$
\Rightarrow T = \dfrac{{1.12 \times {{10}^9} \times 2}}{{2.73 \times {{10}^3} \times 0.0831}} \\
\Rightarrow T = \dfrac{{2.24 \times {{10}^9}}}{{22.43 \times {{10}^3}}} \\
$ (Simple multiplication is done)
$ \Rightarrow T = 9.98 \times {10^6}$
We assume 9.98 as 10 therefore our solution will become; $T=10^7 K.$
Option (C) is correct.
Note: Ideal gas equation has many relations embedded in it, which has different applications like density of gas is directly proportional to the pressure and molecular mass and inversely proportional to the temperature, this relation is used for extinguishing fire by spreading $CO_2$ carbon dioxide over the fire because density of $CO_2$ is more than oxygen and thus carbon dioxide acts as blanket over the fire in order to reduce the presence the oxygen (because burning needs oxygen).
Equation of ideal gas is given as;
$PV = \mu RT$ (P is the pressure, V is the volume, R is the gas constant and T is the temperature)
$\mu $ is $\dfrac{m}{M}$, M is the average molecular weight of the sun, m is the mass of gases.
Complete step by step solution:
Let’s discuss in more detail about the ideal gas equation.
We have three gas laws: Boyle’s law (law of constant temperature) Charles’ law (law of constant volume) and Gay Lussa’s law (law of constant pressure), when the simultaneous change in volume, pressure and temperature takes place gas equation is formed stated below:
$PV = \mu RT$
In which R is the gas constant having a constant value $0.0831 L atm Mol^{-1}K^{-1}$.
The gas which obeys all the gas laws is called an ideal gas.
Now we will come to the calculation part of the question:
$ \Rightarrow PV = \mu RT$.....................(1)
We can write $\mu $ as $\dfrac{m}{M}$
Where, m=$\rho V$ therefore we can write $\mu $as $\dfrac{{\rho V}}{M}$
Substituting the value of $\mu $ in equation 1
$ \Rightarrow PV = \dfrac{{\rho V}}{M}RT$
On cancelling V on LHS and RHS
$ \Rightarrow P = \dfrac{\rho }{M}RT$ ............(2)
From equation 2 we will arrange the terms to get the value of T
$
\Rightarrow \dfrac{{PM}}{{\rho R}} = T \\
\Rightarrow T = \dfrac{{PM}}{{\rho R}} \\
$.........................(3)
In equation 3 we will substitute all the numerical values.
$
\Rightarrow T = \dfrac{{1.12 \times {{10}^9} \times 2}}{{2.73 \times {{10}^3} \times 0.0831}} \\
\Rightarrow T = \dfrac{{2.24 \times {{10}^9}}}{{22.43 \times {{10}^3}}} \\
$ (Simple multiplication is done)
$ \Rightarrow T = 9.98 \times {10^6}$
We assume 9.98 as 10 therefore our solution will become; $T=10^7 K.$
Option (C) is correct.
Note: Ideal gas equation has many relations embedded in it, which has different applications like density of gas is directly proportional to the pressure and molecular mass and inversely proportional to the temperature, this relation is used for extinguishing fire by spreading $CO_2$ carbon dioxide over the fire because density of $CO_2$ is more than oxygen and thus carbon dioxide acts as blanket over the fire in order to reduce the presence the oxygen (because burning needs oxygen).
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
