The ceiling of a hall is \[40m\] high. For maximum horizontal distance, the angle at which the ball can be thrown with the speed of \[56m{s^{ - 1}}\] without hitting the ceiling of the hall is (take \[g = 9.8m/{s^2}\] )
(A) \[{25^{\rm O}}C\]
(B) \[{30^{\rm O}}C\]
(C) \[{45^{\rm O}}C\]
(D) \[{60^{\rm O}}C\]
Answer
Verified
118.2k+ views
Hint: We know that using the third equation of motion \[{V^2} - {U^2} = 2as\] we can write the given relation as \[{V^2}{\sin ^2}\theta - 2gH = 0\]. We will put the value of V, g, H in the equation and find the value of the angle for the maximum horizontal distance.
Complete step by step answer:
It is given in the question that the ceiling of a hall is \[40m\] high. Then we have to find the angle at which the ball can be thrown with the speed \[56m{s^{ - 1}}\] so that it will cover the maximum horizontal distance.
We know that according to the third equation of motion \[{V^2} - {U^2} = 2as\]. Here the initial velocity of the ball is considered as \[0m{s^{ - 1}}\] and the distance S is given by H and acceleration is given by g. then we can rewrite this equation as \[{V^2}{\sin ^2}\theta - 2gH = 0\].
\[56 \times 56{\sin ^2}\theta - 2 \times 9.8 \times 40 = 0\]
\[56 \times 56{\sin ^2}\theta = 2 \times 9.8 \times 40\]
\[{\sin ^2}\theta = \dfrac{{2 \times 9.8 \times 40}}{{56 \times 56}}\]
\[{\sin ^2}\theta = \dfrac{{784}}{{3136}}\]
\[{\sin ^2}\theta = 0.25\]
On finding the square root of both the sides we get-
\[\sin \theta = 0.50\]
We know that the value of \[\sin \theta = 0.50\] an angle \[{30^{\rm O}}\].
Therefore, the maximum value \[\theta \] will be \[{30^{\rm O}}\].
Thus, option B is correct.
Additional information:
It is Note:d that in an open field we want to cover the maximum distance then we have to project our ball at an angle of \[{45^{\rm O}}\]. We will get the maximum range \[{45^{\rm O}}\].
Note:
It is Note:d that the majority one does mistake in writing the relation of maximum height, they may merge the relation of range and height, to avoid such mistake we can use these equations of motion to derive the exact relation and solve our problem accordingly.
Complete step by step answer:
It is given in the question that the ceiling of a hall is \[40m\] high. Then we have to find the angle at which the ball can be thrown with the speed \[56m{s^{ - 1}}\] so that it will cover the maximum horizontal distance.
We know that according to the third equation of motion \[{V^2} - {U^2} = 2as\]. Here the initial velocity of the ball is considered as \[0m{s^{ - 1}}\] and the distance S is given by H and acceleration is given by g. then we can rewrite this equation as \[{V^2}{\sin ^2}\theta - 2gH = 0\].
\[56 \times 56{\sin ^2}\theta - 2 \times 9.8 \times 40 = 0\]
\[56 \times 56{\sin ^2}\theta = 2 \times 9.8 \times 40\]
\[{\sin ^2}\theta = \dfrac{{2 \times 9.8 \times 40}}{{56 \times 56}}\]
\[{\sin ^2}\theta = \dfrac{{784}}{{3136}}\]
\[{\sin ^2}\theta = 0.25\]
On finding the square root of both the sides we get-
\[\sin \theta = 0.50\]
We know that the value of \[\sin \theta = 0.50\] an angle \[{30^{\rm O}}\].
Therefore, the maximum value \[\theta \] will be \[{30^{\rm O}}\].
Thus, option B is correct.
Additional information:
It is Note:d that in an open field we want to cover the maximum distance then we have to project our ball at an angle of \[{45^{\rm O}}\]. We will get the maximum range \[{45^{\rm O}}\].
Note:
It is Note:d that the majority one does mistake in writing the relation of maximum height, they may merge the relation of range and height, to avoid such mistake we can use these equations of motion to derive the exact relation and solve our problem accordingly.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main
At which height is gravity zero class 11 physics JEE_Main
A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN
A wave is travelling along a string At an instant the class 11 physics JEE_Main
The length of a conductor is halved its conductivity class 11 physics JEE_Main
The x t graph of a particle undergoing simple harmonic class 11 physics JEE_MAIN
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
Find the current in wire AB class 11 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)