
The capacitance of a spherical condenser is \[1\mu F\] . If the spacing between the two spheres is \[\text{1 mm}\] , then the radius of the outer sphere is
(A) \[30cm\]
(B) \[6m\]
(C) \[5cm\]
(D) \[3m\]
Answer
218.4k+ views
Hint: A spherical capacitor consists of a solid or hollow spherical conductor of a certain radius surrounded by another concentric spherical conductor of a larger radius. The capacitance for spherical conductors can be obtained by finding the voltage difference between the conductors for a given charge.
Formula Used:
\[C=\dfrac{4\pi {{\varepsilon }_{0}}{{R}_{1}}{{R}_{2}}}{{{R}_{2}}-{{R}_{1}}}\]
Complete step by step answer:
We have been provided with the capacitance of the spherical capacitor and the spacing between the two conductors, which is the difference between their radii.
Capacitance of the spherical capacitor \[(C)=1\mu F={{10}^{-3}}F\] since \[1\mu F={{10}^{-6}}F\]
Also, spacing between the conductors \[({{R}_{2}}-{{R}_{1}})=1mm={{10}^{-3}}m\]
Now since the spacing is very small, we can consider the two capacitors to have almost equal radii, that is \[{{R}_{1}}\approx {{R}_{2}}\]
Also, we know the value of the constant in the capacitor formula, that is, \[\dfrac{1}{4\pi {{\varepsilon }_{0}}}=9\times {{10}^{9}}\]
Substituting all the values listed above in our formula, we get
\[\begin{align}
& C=\dfrac{4\pi {{\varepsilon }_{0}}{{R}_{1}}{{R}_{2}}}{{{R}_{2}}-{{R}_{1}}} \\
& \Rightarrow {{10}^{-6}}F=\dfrac{{{R}_{1}}{{R}_{2}}}{9\times {{10}^{9}}\times {{10}^{-3}}} \\
& \Rightarrow {{R}_{1}}{{R}_{2}}=9{{m}^{2}} \\
& \Rightarrow {{R}_{2}}^{2}=9{{m}^{2}}(\because {{R}_{1}}\approx {{R}_{2}}) \\
& \Rightarrow {{R}_{2}}=3m \\
\end{align}\]
Hence the outer and the inner radius of the spherical conductors forming the capacitor are approximately equal to \[3m\] (a difference of one millimetre in their radius)
But we are only concerned with the outer radius and hence option (D) is the correct answer.
Additional Information: Every spherical conductor having a certain amount of charge acts as a capacitor, even an isolated sphere is considered as a capacitor whose second plate is at infinity. The applications for an isolated spherical capacitor or a pair of spherical capacitors illustrate that a charged sphere has some stored energy as a result of being charged.
Note: Although we have assumed the radii of the two spheres to be equal, we didn’t take their difference to be zero because the spacing between them, although very negligible, is still a gap and means that their radii are only approximately equal. We had to make the assumption because we didn’t have any other piece of information to help us solve the question.
Formula Used:
\[C=\dfrac{4\pi {{\varepsilon }_{0}}{{R}_{1}}{{R}_{2}}}{{{R}_{2}}-{{R}_{1}}}\]
Complete step by step answer:
We have been provided with the capacitance of the spherical capacitor and the spacing between the two conductors, which is the difference between their radii.
Capacitance of the spherical capacitor \[(C)=1\mu F={{10}^{-3}}F\] since \[1\mu F={{10}^{-6}}F\]
Also, spacing between the conductors \[({{R}_{2}}-{{R}_{1}})=1mm={{10}^{-3}}m\]
Now since the spacing is very small, we can consider the two capacitors to have almost equal radii, that is \[{{R}_{1}}\approx {{R}_{2}}\]
Also, we know the value of the constant in the capacitor formula, that is, \[\dfrac{1}{4\pi {{\varepsilon }_{0}}}=9\times {{10}^{9}}\]
Substituting all the values listed above in our formula, we get
\[\begin{align}
& C=\dfrac{4\pi {{\varepsilon }_{0}}{{R}_{1}}{{R}_{2}}}{{{R}_{2}}-{{R}_{1}}} \\
& \Rightarrow {{10}^{-6}}F=\dfrac{{{R}_{1}}{{R}_{2}}}{9\times {{10}^{9}}\times {{10}^{-3}}} \\
& \Rightarrow {{R}_{1}}{{R}_{2}}=9{{m}^{2}} \\
& \Rightarrow {{R}_{2}}^{2}=9{{m}^{2}}(\because {{R}_{1}}\approx {{R}_{2}}) \\
& \Rightarrow {{R}_{2}}=3m \\
\end{align}\]
Hence the outer and the inner radius of the spherical conductors forming the capacitor are approximately equal to \[3m\] (a difference of one millimetre in their radius)
But we are only concerned with the outer radius and hence option (D) is the correct answer.
Additional Information: Every spherical conductor having a certain amount of charge acts as a capacitor, even an isolated sphere is considered as a capacitor whose second plate is at infinity. The applications for an isolated spherical capacitor or a pair of spherical capacitors illustrate that a charged sphere has some stored energy as a result of being charged.
Note: Although we have assumed the radii of the two spheres to be equal, we didn’t take their difference to be zero because the spacing between them, although very negligible, is still a gap and means that their radii are only approximately equal. We had to make the assumption because we didn’t have any other piece of information to help us solve the question.
Recently Updated Pages
Young’s Double Slit Experiment Derivation Explained

Wheatstone Bridge Explained: Working, Formula & Uses

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

