
The capacitance of a spherical condenser is \[1\mu F\] . If the spacing between the two spheres is \[\text{1 mm}\] , then the radius of the outer sphere is
(A) \[30cm\]
(B) \[6m\]
(C) \[5cm\]
(D) \[3m\]
Answer
126.3k+ views
Hint: A spherical capacitor consists of a solid or hollow spherical conductor of a certain radius surrounded by another concentric spherical conductor of a larger radius. The capacitance for spherical conductors can be obtained by finding the voltage difference between the conductors for a given charge.
Formula Used:
\[C=\dfrac{4\pi {{\varepsilon }_{0}}{{R}_{1}}{{R}_{2}}}{{{R}_{2}}-{{R}_{1}}}\]
Complete step by step answer:
We have been provided with the capacitance of the spherical capacitor and the spacing between the two conductors, which is the difference between their radii.
Capacitance of the spherical capacitor \[(C)=1\mu F={{10}^{-3}}F\] since \[1\mu F={{10}^{-6}}F\]
Also, spacing between the conductors \[({{R}_{2}}-{{R}_{1}})=1mm={{10}^{-3}}m\]
Now since the spacing is very small, we can consider the two capacitors to have almost equal radii, that is \[{{R}_{1}}\approx {{R}_{2}}\]
Also, we know the value of the constant in the capacitor formula, that is, \[\dfrac{1}{4\pi {{\varepsilon }_{0}}}=9\times {{10}^{9}}\]
Substituting all the values listed above in our formula, we get
\[\begin{align}
& C=\dfrac{4\pi {{\varepsilon }_{0}}{{R}_{1}}{{R}_{2}}}{{{R}_{2}}-{{R}_{1}}} \\
& \Rightarrow {{10}^{-6}}F=\dfrac{{{R}_{1}}{{R}_{2}}}{9\times {{10}^{9}}\times {{10}^{-3}}} \\
& \Rightarrow {{R}_{1}}{{R}_{2}}=9{{m}^{2}} \\
& \Rightarrow {{R}_{2}}^{2}=9{{m}^{2}}(\because {{R}_{1}}\approx {{R}_{2}}) \\
& \Rightarrow {{R}_{2}}=3m \\
\end{align}\]
Hence the outer and the inner radius of the spherical conductors forming the capacitor are approximately equal to \[3m\] (a difference of one millimetre in their radius)
But we are only concerned with the outer radius and hence option (D) is the correct answer.
Additional Information: Every spherical conductor having a certain amount of charge acts as a capacitor, even an isolated sphere is considered as a capacitor whose second plate is at infinity. The applications for an isolated spherical capacitor or a pair of spherical capacitors illustrate that a charged sphere has some stored energy as a result of being charged.
Note: Although we have assumed the radii of the two spheres to be equal, we didn’t take their difference to be zero because the spacing between them, although very negligible, is still a gap and means that their radii are only approximately equal. We had to make the assumption because we didn’t have any other piece of information to help us solve the question.
Formula Used:
\[C=\dfrac{4\pi {{\varepsilon }_{0}}{{R}_{1}}{{R}_{2}}}{{{R}_{2}}-{{R}_{1}}}\]
Complete step by step answer:
We have been provided with the capacitance of the spherical capacitor and the spacing between the two conductors, which is the difference between their radii.
Capacitance of the spherical capacitor \[(C)=1\mu F={{10}^{-3}}F\] since \[1\mu F={{10}^{-6}}F\]
Also, spacing between the conductors \[({{R}_{2}}-{{R}_{1}})=1mm={{10}^{-3}}m\]
Now since the spacing is very small, we can consider the two capacitors to have almost equal radii, that is \[{{R}_{1}}\approx {{R}_{2}}\]
Also, we know the value of the constant in the capacitor formula, that is, \[\dfrac{1}{4\pi {{\varepsilon }_{0}}}=9\times {{10}^{9}}\]
Substituting all the values listed above in our formula, we get
\[\begin{align}
& C=\dfrac{4\pi {{\varepsilon }_{0}}{{R}_{1}}{{R}_{2}}}{{{R}_{2}}-{{R}_{1}}} \\
& \Rightarrow {{10}^{-6}}F=\dfrac{{{R}_{1}}{{R}_{2}}}{9\times {{10}^{9}}\times {{10}^{-3}}} \\
& \Rightarrow {{R}_{1}}{{R}_{2}}=9{{m}^{2}} \\
& \Rightarrow {{R}_{2}}^{2}=9{{m}^{2}}(\because {{R}_{1}}\approx {{R}_{2}}) \\
& \Rightarrow {{R}_{2}}=3m \\
\end{align}\]
Hence the outer and the inner radius of the spherical conductors forming the capacitor are approximately equal to \[3m\] (a difference of one millimetre in their radius)
But we are only concerned with the outer radius and hence option (D) is the correct answer.
Additional Information: Every spherical conductor having a certain amount of charge acts as a capacitor, even an isolated sphere is considered as a capacitor whose second plate is at infinity. The applications for an isolated spherical capacitor or a pair of spherical capacitors illustrate that a charged sphere has some stored energy as a result of being charged.
Note: Although we have assumed the radii of the two spheres to be equal, we didn’t take their difference to be zero because the spacing between them, although very negligible, is still a gap and means that their radii are only approximately equal. We had to make the assumption because we didn’t have any other piece of information to help us solve the question.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
