
The average kinetic energy of a gas at $ - {23^0}C\,and\,75cm$ pressure is $5 \times {10^{ - 14}}erg$ for ${H_2}$. The mean kinetic energy of the ${O_{2\,}}\,at\,{227^0}C$ and $150cm$ pressure will be
(A) $40 \times {10^{ - 14}}erg$
(B) $10 \times {10^{ - 14}}erg$
(C) $20 \times {10^{ - 14}}erg$
(D) $80 \times {10^{ - 14}}erg$
Answer
161.1k+ views
Hint:First start with finding the relation between the average kinetic energy and the temperature of the gas. After finding the relation, use the information provided in the question such as kinetic energy of Hydrogen, temperature of Hydrogen and Oxygen gasses and get the required answer that is kinetic energy of Oxygen gas.
Formula used:
The average kinetic energy is
$K = \dfrac{1}{2}m \times \dfrac{{3RT}}{M}$
Complete answer:
Now, the formula for the average kinetic energy is as follows;
$K = \dfrac{1}{2}mV_{rms}^2$
Where, K is average kinetic energy
m is mass
${V_{rms}}$ is root mean square velocity
Putting value of root mean square velocity:
$K = \dfrac{1}{2}m \times \dfrac{{3RT}}{M}$
Since all the values are constant, we get;
$\dfrac{K}{T} = $ constant
So, $\dfrac{{{K_{{H_2}}}}}{{{K_{{O_2}}}}} = \dfrac{{{T_{{H_2}}}}}{{{T_{{O_2}}}}}$
${K_{{O_2}}} = \dfrac{{{K_{{H_2}}} \times {T_{{O_2}}}}}{{{T_{{H_2}}}}}$
${K_{{O_2}}} = \dfrac{{5 \times {{10}^{ - 14}} \times 500}}{{250}} = 10 \times {10^{ - 14}}erg$
Hence the correct answer is Option(B).
Note: Use the formula for the average kinetic energy carefully, know what are the constant values and what are the variable values and use accordingly. Be careful about the unit of all the quantities; it should be the same while putting in the formula in order to get the correct answer for the given question.
Formula used:
The average kinetic energy is
$K = \dfrac{1}{2}m \times \dfrac{{3RT}}{M}$
Complete answer:
Now, the formula for the average kinetic energy is as follows;
$K = \dfrac{1}{2}mV_{rms}^2$
Where, K is average kinetic energy
m is mass
${V_{rms}}$ is root mean square velocity
Putting value of root mean square velocity:
$K = \dfrac{1}{2}m \times \dfrac{{3RT}}{M}$
Since all the values are constant, we get;
$\dfrac{K}{T} = $ constant
So, $\dfrac{{{K_{{H_2}}}}}{{{K_{{O_2}}}}} = \dfrac{{{T_{{H_2}}}}}{{{T_{{O_2}}}}}$
${K_{{O_2}}} = \dfrac{{{K_{{H_2}}} \times {T_{{O_2}}}}}{{{T_{{H_2}}}}}$
${K_{{O_2}}} = \dfrac{{5 \times {{10}^{ - 14}} \times 500}}{{250}} = 10 \times {10^{ - 14}}erg$
Hence the correct answer is Option(B).
Note: Use the formula for the average kinetic energy carefully, know what are the constant values and what are the variable values and use accordingly. Be careful about the unit of all the quantities; it should be the same while putting in the formula in order to get the correct answer for the given question.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Class 11 JEE Main Physics Mock Test 2025

Differentiate between audible and inaudible sounds class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
