
The atmospheric pressure and height of the barometer column is \[{10^5}\,Pa\] and $760\,mm$ respectively on the earth surface. If the barometer is taken to the moon, then what will be the column height?
A. zero
B. $76\,mm$
C. $126.6\,mm$
D. $760\,mm$
Answer
218.7k+ views
Hint: We know pressure in a barometer on earth is given by the formula
$p = \rho gh$
Where $\rho $ is the density.
$g$ is the acceleration due to gravity.
$h$ is the height of the column.
On earth the pressure is due to the presence of atmosphere. The reading that we get in the barometer corresponds to the atmospheric pressure
But on the moon there is no air or atmosphere.
Complete step by step answer:
A barometer is an instrument used to measure atmospheric pressure. Atmosphere is a layer of air surrounding the earth. This pressure tendency measured using a barometer can be used to forecast short term changes in the weather.
Given,
Atmospheric pressure on earth surface =${10^5}\,Pa$
The height of barometer on earth surface =$760\,mm$
We need to find column height on the moon.
We know pressure in a barometer on earth is given by the formula
$p = \rho gh$
Where $\rho $ is the density.
$g$ is the acceleration due to gravity.
$h$ is the height of the column.
On earth the pressure is due to the presence of the atmosphere. The reading that we get in the barometer corresponds to the atmospheric pressure.
But on the moon there is no atmosphere. So, there will be no atmospheric pressure
Thus pressure, $p = 0$.
That is, $\rho gh = 0$
$ \Rightarrow \,h = 0$
So, the height of the column will be zero on the moon.
Note: If there was atmosphere on moon(just in case) then we would have to calculate the gravity on moon, on moon gravity is less than that on earth, hence it would take more height than 760mm of Hg to record the same pressure.
$p = \rho gh$
Where $\rho $ is the density.
$g$ is the acceleration due to gravity.
$h$ is the height of the column.
On earth the pressure is due to the presence of atmosphere. The reading that we get in the barometer corresponds to the atmospheric pressure
But on the moon there is no air or atmosphere.
Complete step by step answer:
A barometer is an instrument used to measure atmospheric pressure. Atmosphere is a layer of air surrounding the earth. This pressure tendency measured using a barometer can be used to forecast short term changes in the weather.
Given,
Atmospheric pressure on earth surface =${10^5}\,Pa$
The height of barometer on earth surface =$760\,mm$
We need to find column height on the moon.
We know pressure in a barometer on earth is given by the formula
$p = \rho gh$
Where $\rho $ is the density.
$g$ is the acceleration due to gravity.
$h$ is the height of the column.
On earth the pressure is due to the presence of the atmosphere. The reading that we get in the barometer corresponds to the atmospheric pressure.
But on the moon there is no atmosphere. So, there will be no atmospheric pressure
Thus pressure, $p = 0$.
That is, $\rho gh = 0$
$ \Rightarrow \,h = 0$
So, the height of the column will be zero on the moon.
Note: If there was atmosphere on moon(just in case) then we would have to calculate the gravity on moon, on moon gravity is less than that on earth, hence it would take more height than 760mm of Hg to record the same pressure.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

