
The angular momentum of an electron present in the excited state of hydrogen is $\dfrac{{1.5h}}{\pi }$. The electron is present in:
(a) Third orbit
(b) Second orbit
(c) Fourth orbit
(d) Fifth orbit
Answer
233.1k+ views
Hint: As before doing a solution, we must firstly explain what angular momentum is. Angular momentum is the product of any body’s mass, velocity and radius. In simple way the property characterising the rotatory inertia of an object about an axis that may or may not pass through the system and in this question we have to find the orbit where the electron is present.
Complete Step by Step Solution:
Given,
Angular Momentum in the excited state of hydrogen = $\dfrac{{1.5h}}{\pi }$
As we know the Formula of angular momentum is,
Angular Momentum=$\dfrac{{nh}}{{2\pi }}$
Here in this all the terms stands for,
n = n is the orbit in which electron is present
h = Planck’s Constant
Where h always provides a constant value and n presents the orbit of the electron and in this question we have to find the orbit of the electron.
By Comparing the value from Angular momentum’s equation, we get
$\dfrac{{1.5h}}{\pi } = \dfrac{{nh}}{{2\pi }}$
Since, by comparing both quantities (using substitution)
n = 3
Hence, the electron present in the Third orbit.
So, the correct answer is: (a) Third Orbit
Note: There are 2 special types of angular momentum of an object: the spin angular momentum is the angular momentum about the object centre of mass while the orbital angular momentum is the angular momentum about the chosen centre of rotation.
Complete Step by Step Solution:
Given,
Angular Momentum in the excited state of hydrogen = $\dfrac{{1.5h}}{\pi }$
As we know the Formula of angular momentum is,
Angular Momentum=$\dfrac{{nh}}{{2\pi }}$
Here in this all the terms stands for,
n = n is the orbit in which electron is present
h = Planck’s Constant
Where h always provides a constant value and n presents the orbit of the electron and in this question we have to find the orbit of the electron.
By Comparing the value from Angular momentum’s equation, we get
$\dfrac{{1.5h}}{\pi } = \dfrac{{nh}}{{2\pi }}$
Since, by comparing both quantities (using substitution)
n = 3
Hence, the electron present in the Third orbit.
So, the correct answer is: (a) Third Orbit
Note: There are 2 special types of angular momentum of an object: the spin angular momentum is the angular momentum about the object centre of mass while the orbital angular momentum is the angular momentum about the chosen centre of rotation.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

