
The adjoint of $\left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \\ \end{matrix} \right]$ is [RPET 1993]
A. $\left[ \begin{matrix} 3 & -9 & -5 \\ -4 & 1 & 3 \\ -5 & 4 & 1 \\ \end{matrix} \right]$
B. $\left[ \begin{matrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \\ \end{matrix} \right]$
C. $\left[ \begin{matrix} -3 & \,\,4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1 \\ \end{matrix} \right]$
D. None of these
Answer
162.9k+ views
Hint:
When the co-factor members of a matrix are transposed, the adjoint of the matrix is produced. Here We will first evaluate the cofactor of every element of the matrix. By transposing the co-factor elements of the given matrix, one can obtain the adjoint of a matrix.
Formula Used:
Adjoint of $3 \times 3$ Matrix is given by:
$adjA=\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{22} & A_{33} \end{bmatrix}^T=\begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$
Where $\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{22} & A_{33} \end{bmatrix}$ is cofactor matrix of $A$.
Cofactor of the element is given by:
$C_{ij}=(-1)^{i+j}det(M_{ij})$
here, $det(M_{ij})$ is the minor of $a_{ij}$
Complete step-by-step solution:
Let $A=\left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \\ \end{matrix} \right]$
Finding the cofactors of every element of matrix $A$:
$C_{11}=(-1)^{1+1}\begin{vmatrix}2 & -3 \\-1 & 3 \end{vmatrix}\\
\Rightarrow C_{11}=3\\
C_{12}=(-1)^{1+2}\begin{vmatrix}1 & -3 \\2 & 3 \end{vmatrix}\\
\Rightarrow C_{12}=-9\\
C_{13}=(-1)^{1+3}\begin{vmatrix}1 & 2 \\2 & -1 \end{vmatrix}\\
\Rightarrow C_{13}=-5$
$C_{21}=(-1)^{2+1}\begin{vmatrix}1 & 1 \\-1 & 3 \end{vmatrix}\\
\Rightarrow C_{21}=-4\\
C_{22}=(-1)^{2+2}\begin{vmatrix}1 & 1 \\2 & 3 \end{vmatrix}\\
\Rightarrow C_{22}=1\\
C_{23}=(-1)^{2+3}\begin{vmatrix}1 & 1 \\2 & -1 \end{vmatrix}\\
\Rightarrow C_{23}=3$
$C_{31}=(-1)^{3+1}\begin{vmatrix}1 & 1 \\2 & -3 \end{vmatrix}\\
\Rightarrow C_{31}=-5\\
C_{32}=(-1)^{3+2}\begin{vmatrix}1 & 1 \\1 & 3 \end{vmatrix}\\
\Rightarrow C_{32}=4\\
C_{33}=(-1)^{3+3}\begin{vmatrix}1 & 1 \\1 & 2 \end{vmatrix}\\
\Rightarrow C_{33}=1$
Take the transposition of the cofactor matrix to determine the adjoint.
So, the cofactor matrix $C=\left[ \begin{matrix} 3 & -9 & -5 \\ -4 & 1 & 3 \\ -5 & 4 & 1 \\ \end{matrix} \right]$
Therefore,
$Adj A=C^T\\
Adj\,(A)=\left[ \begin{matrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \\ \end{matrix} \right]$
So, option is B correct.
Note:
Remember the adjoint of a matrix is created when the co-factor matrix is transposed. The determinant obtained by removing the row and column in which an element appears in a matrix is known as the minor of that element. A cofactor is a number that is obtained by removing a specific element's row and column in the shape of a square or rectangle. Depending on the element's position, a positive or negative sign comes before the cofactor.
When the co-factor members of a matrix are transposed, the adjoint of the matrix is produced. Here We will first evaluate the cofactor of every element of the matrix. By transposing the co-factor elements of the given matrix, one can obtain the adjoint of a matrix.
Formula Used:
Adjoint of $3 \times 3$ Matrix is given by:
$adjA=\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{22} & A_{33} \end{bmatrix}^T=\begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$
Where $\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{22} & A_{33} \end{bmatrix}$ is cofactor matrix of $A$.
Cofactor of the element is given by:
$C_{ij}=(-1)^{i+j}det(M_{ij})$
here, $det(M_{ij})$ is the minor of $a_{ij}$
Complete step-by-step solution:
Let $A=\left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \\ \end{matrix} \right]$
Finding the cofactors of every element of matrix $A$:
$C_{11}=(-1)^{1+1}\begin{vmatrix}2 & -3 \\-1 & 3 \end{vmatrix}\\
\Rightarrow C_{11}=3\\
C_{12}=(-1)^{1+2}\begin{vmatrix}1 & -3 \\2 & 3 \end{vmatrix}\\
\Rightarrow C_{12}=-9\\
C_{13}=(-1)^{1+3}\begin{vmatrix}1 & 2 \\2 & -1 \end{vmatrix}\\
\Rightarrow C_{13}=-5$
$C_{21}=(-1)^{2+1}\begin{vmatrix}1 & 1 \\-1 & 3 \end{vmatrix}\\
\Rightarrow C_{21}=-4\\
C_{22}=(-1)^{2+2}\begin{vmatrix}1 & 1 \\2 & 3 \end{vmatrix}\\
\Rightarrow C_{22}=1\\
C_{23}=(-1)^{2+3}\begin{vmatrix}1 & 1 \\2 & -1 \end{vmatrix}\\
\Rightarrow C_{23}=3$
$C_{31}=(-1)^{3+1}\begin{vmatrix}1 & 1 \\2 & -3 \end{vmatrix}\\
\Rightarrow C_{31}=-5\\
C_{32}=(-1)^{3+2}\begin{vmatrix}1 & 1 \\1 & 3 \end{vmatrix}\\
\Rightarrow C_{32}=4\\
C_{33}=(-1)^{3+3}\begin{vmatrix}1 & 1 \\1 & 2 \end{vmatrix}\\
\Rightarrow C_{33}=1$
Take the transposition of the cofactor matrix to determine the adjoint.
So, the cofactor matrix $C=\left[ \begin{matrix} 3 & -9 & -5 \\ -4 & 1 & 3 \\ -5 & 4 & 1 \\ \end{matrix} \right]$
Therefore,
$Adj A=C^T\\
Adj\,(A)=\left[ \begin{matrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \\ \end{matrix} \right]$
So, option is B correct.
Note:
Remember the adjoint of a matrix is created when the co-factor matrix is transposed. The determinant obtained by removing the row and column in which an element appears in a matrix is known as the minor of that element. A cofactor is a number that is obtained by removing a specific element's row and column in the shape of a square or rectangle. Depending on the element's position, a positive or negative sign comes before the cofactor.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
