
The adjoint of $\left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \\ \end{matrix} \right]$ is [RPET 1993]
A. $\left[ \begin{matrix} 3 & -9 & -5 \\ -4 & 1 & 3 \\ -5 & 4 & 1 \\ \end{matrix} \right]$
B. $\left[ \begin{matrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \\ \end{matrix} \right]$
C. $\left[ \begin{matrix} -3 & \,\,4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1 \\ \end{matrix} \right]$
D. None of these
Answer
163.8k+ views
Hint:
When the co-factor members of a matrix are transposed, the adjoint of the matrix is produced. Here We will first evaluate the cofactor of every element of the matrix. By transposing the co-factor elements of the given matrix, one can obtain the adjoint of a matrix.
Formula Used:
Adjoint of $3 \times 3$ Matrix is given by:
$adjA=\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{22} & A_{33} \end{bmatrix}^T=\begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$
Where $\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{22} & A_{33} \end{bmatrix}$ is cofactor matrix of $A$.
Cofactor of the element is given by:
$C_{ij}=(-1)^{i+j}det(M_{ij})$
here, $det(M_{ij})$ is the minor of $a_{ij}$
Complete step-by-step solution:
Let $A=\left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \\ \end{matrix} \right]$
Finding the cofactors of every element of matrix $A$:
$C_{11}=(-1)^{1+1}\begin{vmatrix}2 & -3 \\-1 & 3 \end{vmatrix}\\
\Rightarrow C_{11}=3\\
C_{12}=(-1)^{1+2}\begin{vmatrix}1 & -3 \\2 & 3 \end{vmatrix}\\
\Rightarrow C_{12}=-9\\
C_{13}=(-1)^{1+3}\begin{vmatrix}1 & 2 \\2 & -1 \end{vmatrix}\\
\Rightarrow C_{13}=-5$
$C_{21}=(-1)^{2+1}\begin{vmatrix}1 & 1 \\-1 & 3 \end{vmatrix}\\
\Rightarrow C_{21}=-4\\
C_{22}=(-1)^{2+2}\begin{vmatrix}1 & 1 \\2 & 3 \end{vmatrix}\\
\Rightarrow C_{22}=1\\
C_{23}=(-1)^{2+3}\begin{vmatrix}1 & 1 \\2 & -1 \end{vmatrix}\\
\Rightarrow C_{23}=3$
$C_{31}=(-1)^{3+1}\begin{vmatrix}1 & 1 \\2 & -3 \end{vmatrix}\\
\Rightarrow C_{31}=-5\\
C_{32}=(-1)^{3+2}\begin{vmatrix}1 & 1 \\1 & 3 \end{vmatrix}\\
\Rightarrow C_{32}=4\\
C_{33}=(-1)^{3+3}\begin{vmatrix}1 & 1 \\1 & 2 \end{vmatrix}\\
\Rightarrow C_{33}=1$
Take the transposition of the cofactor matrix to determine the adjoint.
So, the cofactor matrix $C=\left[ \begin{matrix} 3 & -9 & -5 \\ -4 & 1 & 3 \\ -5 & 4 & 1 \\ \end{matrix} \right]$
Therefore,
$Adj A=C^T\\
Adj\,(A)=\left[ \begin{matrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \\ \end{matrix} \right]$
So, option is B correct.
Note:
Remember the adjoint of a matrix is created when the co-factor matrix is transposed. The determinant obtained by removing the row and column in which an element appears in a matrix is known as the minor of that element. A cofactor is a number that is obtained by removing a specific element's row and column in the shape of a square or rectangle. Depending on the element's position, a positive or negative sign comes before the cofactor.
When the co-factor members of a matrix are transposed, the adjoint of the matrix is produced. Here We will first evaluate the cofactor of every element of the matrix. By transposing the co-factor elements of the given matrix, one can obtain the adjoint of a matrix.
Formula Used:
Adjoint of $3 \times 3$ Matrix is given by:
$adjA=\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{22} & A_{33} \end{bmatrix}^T=\begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$
Where $\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{22} & A_{33} \end{bmatrix}$ is cofactor matrix of $A$.
Cofactor of the element is given by:
$C_{ij}=(-1)^{i+j}det(M_{ij})$
here, $det(M_{ij})$ is the minor of $a_{ij}$
Complete step-by-step solution:
Let $A=\left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \\ \end{matrix} \right]$
Finding the cofactors of every element of matrix $A$:
$C_{11}=(-1)^{1+1}\begin{vmatrix}2 & -3 \\-1 & 3 \end{vmatrix}\\
\Rightarrow C_{11}=3\\
C_{12}=(-1)^{1+2}\begin{vmatrix}1 & -3 \\2 & 3 \end{vmatrix}\\
\Rightarrow C_{12}=-9\\
C_{13}=(-1)^{1+3}\begin{vmatrix}1 & 2 \\2 & -1 \end{vmatrix}\\
\Rightarrow C_{13}=-5$
$C_{21}=(-1)^{2+1}\begin{vmatrix}1 & 1 \\-1 & 3 \end{vmatrix}\\
\Rightarrow C_{21}=-4\\
C_{22}=(-1)^{2+2}\begin{vmatrix}1 & 1 \\2 & 3 \end{vmatrix}\\
\Rightarrow C_{22}=1\\
C_{23}=(-1)^{2+3}\begin{vmatrix}1 & 1 \\2 & -1 \end{vmatrix}\\
\Rightarrow C_{23}=3$
$C_{31}=(-1)^{3+1}\begin{vmatrix}1 & 1 \\2 & -3 \end{vmatrix}\\
\Rightarrow C_{31}=-5\\
C_{32}=(-1)^{3+2}\begin{vmatrix}1 & 1 \\1 & 3 \end{vmatrix}\\
\Rightarrow C_{32}=4\\
C_{33}=(-1)^{3+3}\begin{vmatrix}1 & 1 \\1 & 2 \end{vmatrix}\\
\Rightarrow C_{33}=1$
Take the transposition of the cofactor matrix to determine the adjoint.
So, the cofactor matrix $C=\left[ \begin{matrix} 3 & -9 & -5 \\ -4 & 1 & 3 \\ -5 & 4 & 1 \\ \end{matrix} \right]$
Therefore,
$Adj A=C^T\\
Adj\,(A)=\left[ \begin{matrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \\ \end{matrix} \right]$
So, option is B correct.
Note:
Remember the adjoint of a matrix is created when the co-factor matrix is transposed. The determinant obtained by removing the row and column in which an element appears in a matrix is known as the minor of that element. A cofactor is a number that is obtained by removing a specific element's row and column in the shape of a square or rectangle. Depending on the element's position, a positive or negative sign comes before the cofactor.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
