
Take the z=axis as vertical and the x-y plane as horizontal. A particle ‘A’ is projected with velocity $4\sqrt 2 m{s^{ - 1}}$ making an angle $45^\circ $ to the horizontal. Particle B is projected at $5m{s^{ - 1}}$ an angle $\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$ to y axis in y-z plane then velocity of B wrt A.
A) Has its initial magnitude$5m{s^{ - 1}}$.
B) Magnitude will change with time.
C) Lies in the xy plane.
D) Will initially make an angle$\left( {\theta + \dfrac{\pi }{2}} \right)$.
Answer
217.5k+ views
Hint: The x,y and z are the three directions which are mutually perpendicular to each other, the particle A is in plane x-z and the particle B is in the plane y-z. The relative velocity is the difference between the velocities of the two bodies.
Formula used:
The relative velocity of the two particles is given by,
$ \Rightarrow {v_B} - {v_A}$
Where the velocity of particle B is ${v_B}$ and the velocity of particle A is${v_A}$.
Complete step by step solution:
In this problem it is given that a particle ‘A’ is projected with velocity $4\sqrt 2 m{s^{ - 1}}$ making an angle $45^\circ $ to the horizontal. Particle B is projected at $5m{s^{ - 1}}$ an angle $\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$ to y axis in y-z plane then we need to find the velocity of B wrt A.
According to the condition the figure will be.

The velocity of particle A is ${v_A} = 4\hat i + 4\hat k$ and the velocity of particle B is equal to ${v_B} = 3\hat j + 4\hat k$.
The relative velocity of the particle B with respect to particle A is equal to,
$ \Rightarrow {v_B} - {v_A} = \left( {3\hat j + 4\hat k} \right) - \left( {4\hat i + 4\hat k} \right)$
$ \Rightarrow {v_B} - {v_A} = 3\hat j + 4\hat k - 4\hat i - 4\hat k$
$ \Rightarrow {v_B} - {v_A} = 3\hat j + 4\hat k - 4\hat i - 4\hat k$
$ \Rightarrow {v_B} - {v_A} = 3\hat j - 4\hat i$
The magnitude of the velocity is equal to,
$ \Rightarrow {v_B} - {v_A} = \sqrt {{3^2} + {4^2}} $
$ \Rightarrow {v_B} - {v_A} = \sqrt {9 + 16} $
$ \Rightarrow {v_B} - {v_A} = \sqrt {25} $
$ \Rightarrow {v_B} - {v_A} = 5m{s^{ - 1}}$
Which means option A is correct. The magnitude of the acceleration will not change with time and therefore the option B is wrong.
The relative velocity is ${v_B} - {v_A} = 3\hat j - 4\hat i$ which means it is in the x-y plane, the option C is also correct. The angle of the initially equal to,
$ \Rightarrow \theta = {\tan ^{ - 1}}\left( { - \dfrac{4}{3}} \right)$
As the angle is negative and therefore we add $\dfrac{\pi }{2}$ so the angle becomes $\theta + \dfrac{\pi }{2}$, so the option D is correct.
The wrong option is option B, so the answer for this problem is option B.
Note: The students are advised to remember the formula of the relative velocity and also the diagram of the velocity of the particle A and particle B should be drawn very carefully as the answer is very dependent on the diagram.
Formula used:
The relative velocity of the two particles is given by,
$ \Rightarrow {v_B} - {v_A}$
Where the velocity of particle B is ${v_B}$ and the velocity of particle A is${v_A}$.
Complete step by step solution:
In this problem it is given that a particle ‘A’ is projected with velocity $4\sqrt 2 m{s^{ - 1}}$ making an angle $45^\circ $ to the horizontal. Particle B is projected at $5m{s^{ - 1}}$ an angle $\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$ to y axis in y-z plane then we need to find the velocity of B wrt A.
According to the condition the figure will be.

The velocity of particle A is ${v_A} = 4\hat i + 4\hat k$ and the velocity of particle B is equal to ${v_B} = 3\hat j + 4\hat k$.
The relative velocity of the particle B with respect to particle A is equal to,
$ \Rightarrow {v_B} - {v_A} = \left( {3\hat j + 4\hat k} \right) - \left( {4\hat i + 4\hat k} \right)$
$ \Rightarrow {v_B} - {v_A} = 3\hat j + 4\hat k - 4\hat i - 4\hat k$
$ \Rightarrow {v_B} - {v_A} = 3\hat j + 4\hat k - 4\hat i - 4\hat k$
$ \Rightarrow {v_B} - {v_A} = 3\hat j - 4\hat i$
The magnitude of the velocity is equal to,
$ \Rightarrow {v_B} - {v_A} = \sqrt {{3^2} + {4^2}} $
$ \Rightarrow {v_B} - {v_A} = \sqrt {9 + 16} $
$ \Rightarrow {v_B} - {v_A} = \sqrt {25} $
$ \Rightarrow {v_B} - {v_A} = 5m{s^{ - 1}}$
Which means option A is correct. The magnitude of the acceleration will not change with time and therefore the option B is wrong.
The relative velocity is ${v_B} - {v_A} = 3\hat j - 4\hat i$ which means it is in the x-y plane, the option C is also correct. The angle of the initially equal to,
$ \Rightarrow \theta = {\tan ^{ - 1}}\left( { - \dfrac{4}{3}} \right)$
As the angle is negative and therefore we add $\dfrac{\pi }{2}$ so the angle becomes $\theta + \dfrac{\pi }{2}$, so the option D is correct.
The wrong option is option B, so the answer for this problem is option B.
Note: The students are advised to remember the formula of the relative velocity and also the diagram of the velocity of the particle A and particle B should be drawn very carefully as the answer is very dependent on the diagram.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

