
What is the sum of the series $1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty $?
A. $\dfrac{2}{\sqrt{3}}$
B. $2\sqrt{3}$
C. $\dfrac{\sqrt{3}}{2}$
D. $\dfrac{1}{2\sqrt{3}}$
Answer
163.8k+ views
Hint: In this question, we are to find the sum of the given series. Here we apply the binomial theorem for the rational index to find the sum of the given series. This is because given series has rational numbers.
Formula used: The binomial theorem for rational index:
$1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)(n-2)}{3!}{{x}^{3}}+...={{(1+x)}^{n}}$
Where $\left| x \right|<1$
We can calculate the factorial of a number as
$\begin{align}
& n!=n\cdot (n-1)\cdot (n-2)....(n-r+1) \\
& \text{ }=n(n-1)! \\
\end{align}$
Complete step by step solution: Given series is
$1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty \text{ }...(1)$
Here, the numerators and the denominators are in arithmetic progression.
But we cannot find this by using arithmetic progression.
So, on applying the binomial theorem for rational index. I.e.,
$1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)(n-2)}{3!}{{x}^{3}}+...={{(1+x)}^{n}}\text{ }...(2)$
On comparing (1) and (2), we get
$nx=\dfrac{1}{8}\text{ }...(3)$; and
$\dfrac{n(n-1)}{2!}{{x}^{2}}=\dfrac{1\cdot 3}{8\cdot 16}\text{ }...(4)$;
Squaring on both sides of (3), we get
$\begin{align}
& nx=\dfrac{1}{8} \\
& \Rightarrow {{n}^{2}}{{x}^{2}}=\dfrac{1}{8}\cdot \dfrac{1}{8}\text{ }...(5) \\
\end{align}$
On dividing (4) and (5), we get
$\begin{align}
& \dfrac{\dfrac{n(n-1)}{2!}{{x}^{2}}}{{{n}^{2}}{{x}^{2}}}=\dfrac{\dfrac{1\cdot 3}{8\cdot 16}}{\dfrac{1}{8}\cdot \dfrac{1}{8}} \\
& \Rightarrow \dfrac{n-1}{2n}=\dfrac{3}{2} \\
& \Rightarrow n-1=3n \\
& \Rightarrow 2n=-1 \\
& \therefore n=\dfrac{-1}{2} \\
\end{align}$
Thus, substituting the obtained value in (3), we get
$\begin{align}
& nx=\dfrac{1}{8} \\
& \Rightarrow \left( \dfrac{-1}{2} \right)x=\dfrac{1}{8} \\
& \Rightarrow x=\dfrac{-1}{4} \\
\end{align}$
Thus, the required sum is
$\begin{align}
& 1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty ={{(1+x)}^{n}} \\
& \Rightarrow {{S}_{\infty }}={{(1-\dfrac{1}{4})}^{\dfrac{-1}{2}}}={{\left( \dfrac{3}{4} \right)}^{\dfrac{-1}{2}}} \\
\end{align}$
Rewriting the obtained value and simplifying, we get
${{S}_{\infty }}={{\left( \dfrac{4}{3} \right)}^{\dfrac{1}{2}}}=\sqrt{\dfrac{4}{3}}=\dfrac{2}{\sqrt{3}}$
Therefore, the sum of the series $1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty $ is $\dfrac{2}{\sqrt{3}}$.
Thus, Option (A) is correct.
Note: Here in this question, we need to use the binomial theorem for rational numbers. Otherwise, we do not get the infinite sum of the series since the \[n^{th}\] term is also a rational number and it is less than $1$. By comparing the terms of this series with the terms in the binomial expansion, we get the values of $n$ and $x$. By using them, we can find the required sum.
Formula used: The binomial theorem for rational index:
$1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)(n-2)}{3!}{{x}^{3}}+...={{(1+x)}^{n}}$
Where $\left| x \right|<1$
We can calculate the factorial of a number as
$\begin{align}
& n!=n\cdot (n-1)\cdot (n-2)....(n-r+1) \\
& \text{ }=n(n-1)! \\
\end{align}$
Complete step by step solution: Given series is
$1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty \text{ }...(1)$
Here, the numerators and the denominators are in arithmetic progression.
But we cannot find this by using arithmetic progression.
So, on applying the binomial theorem for rational index. I.e.,
$1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)(n-2)}{3!}{{x}^{3}}+...={{(1+x)}^{n}}\text{ }...(2)$
On comparing (1) and (2), we get
$nx=\dfrac{1}{8}\text{ }...(3)$; and
$\dfrac{n(n-1)}{2!}{{x}^{2}}=\dfrac{1\cdot 3}{8\cdot 16}\text{ }...(4)$;
Squaring on both sides of (3), we get
$\begin{align}
& nx=\dfrac{1}{8} \\
& \Rightarrow {{n}^{2}}{{x}^{2}}=\dfrac{1}{8}\cdot \dfrac{1}{8}\text{ }...(5) \\
\end{align}$
On dividing (4) and (5), we get
$\begin{align}
& \dfrac{\dfrac{n(n-1)}{2!}{{x}^{2}}}{{{n}^{2}}{{x}^{2}}}=\dfrac{\dfrac{1\cdot 3}{8\cdot 16}}{\dfrac{1}{8}\cdot \dfrac{1}{8}} \\
& \Rightarrow \dfrac{n-1}{2n}=\dfrac{3}{2} \\
& \Rightarrow n-1=3n \\
& \Rightarrow 2n=-1 \\
& \therefore n=\dfrac{-1}{2} \\
\end{align}$
Thus, substituting the obtained value in (3), we get
$\begin{align}
& nx=\dfrac{1}{8} \\
& \Rightarrow \left( \dfrac{-1}{2} \right)x=\dfrac{1}{8} \\
& \Rightarrow x=\dfrac{-1}{4} \\
\end{align}$
Thus, the required sum is
$\begin{align}
& 1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty ={{(1+x)}^{n}} \\
& \Rightarrow {{S}_{\infty }}={{(1-\dfrac{1}{4})}^{\dfrac{-1}{2}}}={{\left( \dfrac{3}{4} \right)}^{\dfrac{-1}{2}}} \\
\end{align}$
Rewriting the obtained value and simplifying, we get
${{S}_{\infty }}={{\left( \dfrac{4}{3} \right)}^{\dfrac{1}{2}}}=\sqrt{\dfrac{4}{3}}=\dfrac{2}{\sqrt{3}}$
Therefore, the sum of the series $1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty $ is $\dfrac{2}{\sqrt{3}}$.
Thus, Option (A) is correct.
Note: Here in this question, we need to use the binomial theorem for rational numbers. Otherwise, we do not get the infinite sum of the series since the \[n^{th}\] term is also a rational number and it is less than $1$. By comparing the terms of this series with the terms in the binomial expansion, we get the values of $n$ and $x$. By using them, we can find the required sum.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
