
What is the sum of the series $1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty $?
A. $\dfrac{2}{\sqrt{3}}$
B. $2\sqrt{3}$
C. $\dfrac{\sqrt{3}}{2}$
D. $\dfrac{1}{2\sqrt{3}}$
Answer
217.8k+ views
Hint: In this question, we are to find the sum of the given series. Here we apply the binomial theorem for the rational index to find the sum of the given series. This is because given series has rational numbers.
Formula used: The binomial theorem for rational index:
$1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)(n-2)}{3!}{{x}^{3}}+...={{(1+x)}^{n}}$
Where $\left| x \right|<1$
We can calculate the factorial of a number as
$\begin{align}
& n!=n\cdot (n-1)\cdot (n-2)....(n-r+1) \\
& \text{ }=n(n-1)! \\
\end{align}$
Complete step by step solution: Given series is
$1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty \text{ }...(1)$
Here, the numerators and the denominators are in arithmetic progression.
But we cannot find this by using arithmetic progression.
So, on applying the binomial theorem for rational index. I.e.,
$1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)(n-2)}{3!}{{x}^{3}}+...={{(1+x)}^{n}}\text{ }...(2)$
On comparing (1) and (2), we get
$nx=\dfrac{1}{8}\text{ }...(3)$; and
$\dfrac{n(n-1)}{2!}{{x}^{2}}=\dfrac{1\cdot 3}{8\cdot 16}\text{ }...(4)$;
Squaring on both sides of (3), we get
$\begin{align}
& nx=\dfrac{1}{8} \\
& \Rightarrow {{n}^{2}}{{x}^{2}}=\dfrac{1}{8}\cdot \dfrac{1}{8}\text{ }...(5) \\
\end{align}$
On dividing (4) and (5), we get
$\begin{align}
& \dfrac{\dfrac{n(n-1)}{2!}{{x}^{2}}}{{{n}^{2}}{{x}^{2}}}=\dfrac{\dfrac{1\cdot 3}{8\cdot 16}}{\dfrac{1}{8}\cdot \dfrac{1}{8}} \\
& \Rightarrow \dfrac{n-1}{2n}=\dfrac{3}{2} \\
& \Rightarrow n-1=3n \\
& \Rightarrow 2n=-1 \\
& \therefore n=\dfrac{-1}{2} \\
\end{align}$
Thus, substituting the obtained value in (3), we get
$\begin{align}
& nx=\dfrac{1}{8} \\
& \Rightarrow \left( \dfrac{-1}{2} \right)x=\dfrac{1}{8} \\
& \Rightarrow x=\dfrac{-1}{4} \\
\end{align}$
Thus, the required sum is
$\begin{align}
& 1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty ={{(1+x)}^{n}} \\
& \Rightarrow {{S}_{\infty }}={{(1-\dfrac{1}{4})}^{\dfrac{-1}{2}}}={{\left( \dfrac{3}{4} \right)}^{\dfrac{-1}{2}}} \\
\end{align}$
Rewriting the obtained value and simplifying, we get
${{S}_{\infty }}={{\left( \dfrac{4}{3} \right)}^{\dfrac{1}{2}}}=\sqrt{\dfrac{4}{3}}=\dfrac{2}{\sqrt{3}}$
Therefore, the sum of the series $1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty $ is $\dfrac{2}{\sqrt{3}}$.
Thus, Option (A) is correct.
Note: Here in this question, we need to use the binomial theorem for rational numbers. Otherwise, we do not get the infinite sum of the series since the \[n^{th}\] term is also a rational number and it is less than $1$. By comparing the terms of this series with the terms in the binomial expansion, we get the values of $n$ and $x$. By using them, we can find the required sum.
Formula used: The binomial theorem for rational index:
$1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)(n-2)}{3!}{{x}^{3}}+...={{(1+x)}^{n}}$
Where $\left| x \right|<1$
We can calculate the factorial of a number as
$\begin{align}
& n!=n\cdot (n-1)\cdot (n-2)....(n-r+1) \\
& \text{ }=n(n-1)! \\
\end{align}$
Complete step by step solution: Given series is
$1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty \text{ }...(1)$
Here, the numerators and the denominators are in arithmetic progression.
But we cannot find this by using arithmetic progression.
So, on applying the binomial theorem for rational index. I.e.,
$1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)(n-2)}{3!}{{x}^{3}}+...={{(1+x)}^{n}}\text{ }...(2)$
On comparing (1) and (2), we get
$nx=\dfrac{1}{8}\text{ }...(3)$; and
$\dfrac{n(n-1)}{2!}{{x}^{2}}=\dfrac{1\cdot 3}{8\cdot 16}\text{ }...(4)$;
Squaring on both sides of (3), we get
$\begin{align}
& nx=\dfrac{1}{8} \\
& \Rightarrow {{n}^{2}}{{x}^{2}}=\dfrac{1}{8}\cdot \dfrac{1}{8}\text{ }...(5) \\
\end{align}$
On dividing (4) and (5), we get
$\begin{align}
& \dfrac{\dfrac{n(n-1)}{2!}{{x}^{2}}}{{{n}^{2}}{{x}^{2}}}=\dfrac{\dfrac{1\cdot 3}{8\cdot 16}}{\dfrac{1}{8}\cdot \dfrac{1}{8}} \\
& \Rightarrow \dfrac{n-1}{2n}=\dfrac{3}{2} \\
& \Rightarrow n-1=3n \\
& \Rightarrow 2n=-1 \\
& \therefore n=\dfrac{-1}{2} \\
\end{align}$
Thus, substituting the obtained value in (3), we get
$\begin{align}
& nx=\dfrac{1}{8} \\
& \Rightarrow \left( \dfrac{-1}{2} \right)x=\dfrac{1}{8} \\
& \Rightarrow x=\dfrac{-1}{4} \\
\end{align}$
Thus, the required sum is
$\begin{align}
& 1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty ={{(1+x)}^{n}} \\
& \Rightarrow {{S}_{\infty }}={{(1-\dfrac{1}{4})}^{\dfrac{-1}{2}}}={{\left( \dfrac{3}{4} \right)}^{\dfrac{-1}{2}}} \\
\end{align}$
Rewriting the obtained value and simplifying, we get
${{S}_{\infty }}={{\left( \dfrac{4}{3} \right)}^{\dfrac{1}{2}}}=\sqrt{\dfrac{4}{3}}=\dfrac{2}{\sqrt{3}}$
Therefore, the sum of the series $1+\dfrac{1}{8}+\dfrac{1\cdot 3}{8\cdot 16}+\dfrac{1\cdot 3\cdot 5}{8\cdot 16\cdot 24}+...+\infty $ is $\dfrac{2}{\sqrt{3}}$.
Thus, Option (A) is correct.
Note: Here in this question, we need to use the binomial theorem for rational numbers. Otherwise, we do not get the infinite sum of the series since the \[n^{th}\] term is also a rational number and it is less than $1$. By comparing the terms of this series with the terms in the binomial expansion, we get the values of $n$ and $x$. By using them, we can find the required sum.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

