
What is the solution to the differential equation\[\dfrac{{dy}}{{dx}} = y\left( {{e^x} + 1} \right)\]?
A. \[y + {e^{\left( {{e^x} + x + c} \right)}} = 0\]
B. \[\log y = {e^x} + x + c\]
C. \[\log y + {e^x} = x + c\]
D. None of these
Answer
163.5k+ views
Hint: We will use the separation of variable method to separate the variable of the given differential equation. Then we take integration on both sides of the equation and integrate it.
Formula used:
Integration exponential function:
\[\int {{e^x}dx} = {e^x} + c\]
Integrating formula of logarithm
\[\int {\dfrac{1}{x}} dx = \log x + c\]
Integration formula
\[\int {dx} = x + c\]
Complete step by step solution:
The given differential equation is
\[\dfrac{{dy}}{{dx}} = y\left( {{e^x} + 1} \right)\]
Separate the variable of the above equation
\[\dfrac{{dy}}{y} = \left( {{e^x} + 1} \right)dx\]
Taking integration on both sides
\[\int {\dfrac{{dy}}{y}} = \int {\left( {{e^x} + 1} \right)dx} \]
Applying the integration formula
\[\log y = {e^x} + x + c\]
Hence option B is the correct option.
Additional information:
Particular solution: when we have an initial condition to calculate the value of c, then the solution of the differential equation is known as a particular solution.
General solution: When we don’t have any initial condition to calculate the value of c, then the solution of the differential equation is known as a general solution.
The general solution represents a family of solutions of the differential equation.
Note: Some students make a mistake to integrate \[\int {\dfrac{1}{y}} dy\]. They apply exponential formula that is \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]. They calculate \[\int {\dfrac{1}{y}} dy = \dfrac{{{y^{ - 1 + 1}}}}{{ - 1 + 1}} + c\] which is an incorrect way. The correct formula is \[\int {\dfrac{1}{y}} dy = \log y + c\].
Formula used:
Integration exponential function:
\[\int {{e^x}dx} = {e^x} + c\]
Integrating formula of logarithm
\[\int {\dfrac{1}{x}} dx = \log x + c\]
Integration formula
\[\int {dx} = x + c\]
Complete step by step solution:
The given differential equation is
\[\dfrac{{dy}}{{dx}} = y\left( {{e^x} + 1} \right)\]
Separate the variable of the above equation
\[\dfrac{{dy}}{y} = \left( {{e^x} + 1} \right)dx\]
Taking integration on both sides
\[\int {\dfrac{{dy}}{y}} = \int {\left( {{e^x} + 1} \right)dx} \]
Applying the integration formula
\[\log y = {e^x} + x + c\]
Hence option B is the correct option.
Additional information:
Particular solution: when we have an initial condition to calculate the value of c, then the solution of the differential equation is known as a particular solution.
General solution: When we don’t have any initial condition to calculate the value of c, then the solution of the differential equation is known as a general solution.
The general solution represents a family of solutions of the differential equation.
Note: Some students make a mistake to integrate \[\int {\dfrac{1}{y}} dy\]. They apply exponential formula that is \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]. They calculate \[\int {\dfrac{1}{y}} dy = \dfrac{{{y^{ - 1 + 1}}}}{{ - 1 + 1}} + c\] which is an incorrect way. The correct formula is \[\int {\dfrac{1}{y}} dy = \log y + c\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
